A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sundaram, M.

Paper Title Page
RPAP048 SNS Diagnostics Timing Integration 3001
 
  • C.D. Long
    Innovative Design, Knoxville, Tennessee
  • W. Blokland, D.J. Murphy, J. Pogge, J.D. Purcell
    ORNL, Oak Ridge, Tennessee
  • M. Sundaram
    University of Tennessee, Knoxville, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based running Windows XP Embedded for its OS and LabVIEW as its programming language. Coordinating timing among the various diagnostics instruments with the generation of the beam pulse is a challenging task that we have chosen to divide into three phases. First, timing was derived from VME based systems. In the second phase, described in this paper, timing pulses are generated by an in house designed PCI timing card installed in ten diagnostics PCs. Using fan-out modules, enough triggers were generated for all instruments. This paper describes how the Timing NAD (Network Attached Device) was rapidly developed using our NAD template, LabVIEW’s PCI driver wizard, and LabVIEW Channel Access library. The NAD was successfully commissioned and has reliably provided triggers to the instruments. This work supports the coming third phase where every NAD will have its own timing card.

 
FPAT014 Dynamic Visualization of SNS Diagnostics Summary Report and System Status 1395
 
  • W. Blokland, D.J. Murphy, J.D. Purcell
    ORNL, Oak Ridge, Tennessee
  • A.V. Liyu
    RAS/INR, Moscow
  • C.D. Long
    Innovative Design, Knoxville, Tennessee
  • M. Sundaram
    University of Tennessee, Knoxville, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based running Embedded Windows XP and LabVIEW. The diagnostics instruments communicate with the control system using the Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS). This paper describes the Diagnostics Group’s approach to collecting data from the instruments, processing it, and presenting live in a summarized way over the web. Effectively, adding a supervisory level to the diagnostics instruments. One application of this data mining is the "Diagnostics Status Page" that summarizes the insert-able devices, transport efficiencies, and the mode of the accelerator in a compact webpage. The displays on the webpage change automatically to show the latest and/or most interesting instruments in use.

 
FPAT017 SNS Diagnostics Tools for Data Acquisition and Display 1544
 
  • M. Sundaram
    University of Tennessee, Knoxville, Tennessee
  • W. Blokland
    ORNL, Oak Ridge, Tennessee
  • C.D. Long
    Innovative Design, Knoxville, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S Department of Energy.

The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1.0 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. The diagnostics platform as well as other control systems and operator consoles use the Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) to communicate. This paper describes the tools created to evaluate the diagnostic instrument using our standard programming environment, LabVIEW. The tools are based on the LabVIEW Channel Access library and can run on Windows, Linux, and Mac OS X. The data-acquisition tool uses drop and drag to select process variables organized by instrument, accelerator component, or beam parameters. The data can be viewed on-line and logged to disk for later use. A drag and drop display creation tool supports the quick creation of graphical displays to visualize the data produced by the instruments without the need for programming.