A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Stein, S.J.

Paper Title Page
RPAT087 Design of a High-Resolution Optical Transition Radiation Imager System for the Linac Coherent Light Source Undulator 4209
 
  • B.X. Yang, J.L. Bailey, S.J. Stein, D.R. Walters
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

The Linac Coherent Light Source (LCLS), a free-electron x-ray laser, is under design and construction. Its high intensity electron beam, 3400 A in peak current and 46 TW in peak power, is concentrated in a small area (30 micrometer rms in both horizontal and vertical directions) inside its undulator. Ten optical transition radiation (OTR) imagers are planned between the undulator segments for the characterization of the transverse profiles of the electron beam. In this paper, we present the performance requirements and technical requirements of the OTR imagers. We will discuss in detail the design of the OTR screen, the arrangement and modeling of the imaging optics, and the mechanical design and analysis of the compact camera module. Through a unique optical arrangement, this imager will achieve a fine resolution (12 micrometer rms or better) over the entire field of view (5 mm × 5 mm). The compact camera module will fit in the limited space available with remote focus adjustment. A digital camera will be used to read out the beam images in a programmable region (5 mm × 0.5 mm) at the full beam repetition rate (120 Hz), or over the entire field at a lower rate (15 Hz).