A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Smolenski, K.W.

Paper Title Page
MPPT034 Field Modelling for the CESR-c Superconducting Wiggler Magnets 2336
 
  • J.A. Crittenden, A.A. Mikhailichenko, A. Temnykh
    Cornell University, Department of Physics, Ithaca, New York
  • E.N. Smith, K.W. Smolenski
    Cornell University, Ithaca, New York
 
  Funding: National Science Foundation.

Superconducting wiggler magnets for operation of the CESR electron-storage ring at energies as low as 1.5 \gev have been designed, built and installed in the years 2000 to 2004. Finite-element models of field quality have been developed, various sources of field errors investigated and compared to field measurements. Minimization algorithms providing accurate analytic representations of the wiggler fields have been established. We present quantitative descriptions of field modelling, of measured field quality and of the accuracy achieved in the analytic functions of the field.

 
RPPT026 Status of a Plan for an ERL Extension to CESR 1928
 
  • G. Hoffstaetter, S.A. Belomestnykh, J.S.-H. Choi, Z. Greenwald, M. Liepe, H. Padamsee, D. Sagan, C. Song, R.M. Talman, M. Tigner
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • I.V. Bazarov, K.W. Smolenski
    Cornell University, Ithaca, New York
  • D.H. Bilderback, M.G. Billing, S.M. Gruner, Y. Li, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: Cornell University.

We describe the status of plans to build an Energy-Recovery Linac (ERL) X-ray facility at Cornell University. This 5 GeV ERL is an upgrade of the CESR ring that currently powers the Cornell High Energy Synchrotron Source (CHESS). Due to its very small electron-beam emittances, it would dramatically improve the capabilities of the light source and result in X-ray beams orders of magnitude better than any existing storage ring light source. The emittances are based upon simulations for currents that are competitive with ring-based sources. The ERL design that is presented has to allow for non-destructive transport of these small emittances. The design includes a series of X-ray beamlines for specific areas of research. As an upgrade of the existing storage ring, special attention is given to reuse of many of the existing ring components. Options of bunch compression are discussed, tolerances for emittance growth are specified, and simulations of the beam-breakup instability and methods of increasing its threshold current are shown. This planned upgrade illustrates how other existing storage rings could be upgraded as ERL light sources with vastly improved beam qualities.