A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shibasaki, Y.

Paper Title Page
FPAE036 Lattice Modification of a 1.2 GeV STB Ring for Generation of High Energy Gamma-Rays Using Internal Target Wire 2458
 
  • F. Hinode, H. Hama, M. Kawai, A. Kurihara, A. Miyamoto, M. Mutoh, M. Nanao, Y. Shibasaki, K. Shinto, S. Takahashi, T. Tanaka
    LNS, Sendai
 
  A 1.2 GeV Stretcher-Booster Ring (STB ring) has been routinely operated at Laboratory of Nuclear Science (LNS), Tohoku University. The STB ring has functions of a pulse-beam stretcher and a booster-storage ring. In the booster-storage operation, high energy gamma-ray beam generated via bremsstrahlung from internal target wire is utilized for experiments of nuclear physics. Some fractions of circulating electrons are also deflected in the target wire due to Coulomb scattering without significant loss of the energy. The scattered electrons that are not getting out of the dynamic aperture once can circulate in the ring. Such electrons, however, would hit the chamber walls and supports of the target wire during further turns, because they have very large betatron amplitude. Consequently the Coulomb scattered electrons must be a source of significant background and may cause a degradation of gamma-ray beam quality. The quality of the gamma-ray beam has been improved by modifying the lattice functions of the ring, and we report the improvement in this conference.