A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sheehy, B.

Paper Title Page
MOPB008 Temporal E-Beam Shaping in an S-Band Accelerator 642
 
  • H. Loos, D. Dowell, A. Gilevich, C. Limborg-Deprey
    SLAC, Menlo Park, California
  • M. Boscolo, M. Ferrario, M. Petrarca, C. Vicario
    INFN/LNF, Frascati (Roma)
  • J.B. Murphy, B. Sheehy, Y. Shen, T. Tsang, X.J. Wang, Z. Wu
    BNL, Upton, Long Island, New York
  • L. Serafini
    INFN-Milano, Milano
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contracts DE-AC02-98CH10886 and DE-AC03-76SF00515.

New short-wavelength SASE light sources will require very bright electron beams, brighter in some cases than is now possible. One method for improving brightness involves the careful shaping of the electron bunch to control the degrading effects of its space charge forces. We study this experimentally in an S-band system, by using an acousto-optical programmable dispersive filter to shape the photocathode laser pulse that drives the RF photoinjector. We report on the efficacy of shaping from the IR through the UV, and the effects of shaping on the electron beam dynamics.

 
MOPB010 Simulations and Experiments of Electron Beams Pre-Modulated at the Photocathode 704
 
  • J.G. Neumann, R.B. Fiorito, P.G. O'Shea
    IREAP, College Park, Maryland
  • G.L. Carr, T.V. Shaftan, B. Sheehy, Y. Shen, Z. Wu
    BNL, Upton, Long Island, New York
  • W. Graves
    MIT, Middleton, Massachusetts
  • H. Loos
    SLAC, Menlo Park, California
 
  Funding: Work is supported by the Office of Naval Research, the Joint Technology Office, and the Department of Energy.

The University of Maryland and the Source Development Laboratory at Brookhaven National Laboratory have been collaborating on a project that explores the use of electron beam pre-modulation at the cathode to control the longitudinal structure of the electron beam. This technique could be applied to creating deliberate modulations which can lead to the generation of terahertz radiation, or creating a smooth profile in order to supress radiation. This paper focuses on simulations that explore some of the pre-modulated cases achieved experimentally.

 
TOAB003 First Results from the DUV-FEL Upgrade at BNL
 
  • X.J. Wang, J.B. Murphy, I.P. Pinayev, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, Z. Wu, L.-H. Yu
    BNL, Upton, Long Island, New York
  • H. Loos
    SLAC, Menlo Park, California
 
  The DUV-FEL at BNL is the world’s only facility dedicated to laser-seeded FEL R&D and its applications. Tremendous progress was made in both HGHG FEL and its applications in the last couple years.*,** In response to the requests of many users to study chemical science at the facility, the DUV-FEL linac was upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 uJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for ultraviolet radiation and enable state-of-the-art gas phase photochemistry research. The upgraded facility will also make possible key R&D experiments such as higher harmonic HGHG (n>5) that would lay the groundwork for future X-ray FEL based on HGHG. The upgraded HGHG FEL will operate at the 4th harmonic with the seed laser at either 800 nm or 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New HGHG modulator and dispersion sections vacuum chambers will be manufactured to accommodate new matching optics and 8th harmonic HGHG. The initial results of the DUV-FEL upgrade and other FEL and accelerator physics R&D opportunities will be discussed.

*L.H. Yu et al., Phy. Rev. Lett. 91, 074801-1 (2003). **W. Li et al., Phy. Rev. Lett. 92, 083002-1(2004).

 
RPAE056 NSLS II: The Future of the NSLS 3345
 
  • J.B. Murphy, J. Bengtsson, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S. Chouhan, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E.D. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, N.A. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886

The National Synchrotron Light Source at BNL was the first dedicated light source facility and it has now operated for more than 20 years. During this time the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultra-high brightness (~10E21) electron storage ring, tailored to the 0.3-20 KeV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.