A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shaw, R.W.

Paper Title Page
RPPE030 Corrugated Thin Diamond Foils for SNS H- Injection Stripping 2152
 
  • R.W. Shaw, V.A. Davis, R.N. Potter, L.L. Wilson
    ORNL, Oak Ridge, Tennessee
  • C.S. Feigerle, M.E. Peretich
    University of Tennessee, Knoxville, Tennessee
  • C.J. Liaw
    BNL, Upton, Long Island, New York
 
  Funding: MEP acknowledges a SURE fellowship, supported by Science Alliance, a UT Center of Excellence. RNP acknowledges an appointment to the U.S. DOE SULI Program at the Oak Ridge National Laboratory. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a collaboration of six US National Laboratories: ANL, BNL, TJNAF, LANL, LBNL, and ORNL.

We have prepared and tested corrugated, thin diamond foils for use in stripping the SNS H- Linac beam. Diamond has shown promise for providing ca. 10X increased lifetime over traditional carbon foils. The preferred foil geometry is 10.5 by 20 mm at 350 microgram/cm2, mechanically supported on preferably one, but no more than two, edges. The foils are prepared by chemical vapor deposition (CVD) on a patterned silicon substrate, followed by chemical removal of the silicon. This yields a foil with trapezoidal corrugations to enhance mechanical strength and foil flatness. Both micro- and nano-crystalline diamond foils have been grown. Microwave plasma CVD methods that incorporate high argon gas content were used to produce the latter. Sixteen foils of a variety of characteristics have been tested using the BNL 750 keV RFQ H- beam to simulate the energy deposition in the SNS foil. Long foil lifetimes, up to more than 130 hours, have been demonstrated. Characterization of the foils after beam testing indicates creation of sp2 defects within the ion beam spot. Current efforts are centered on development of corrugation patterns that will enhance flatness of single-edge supported foils.