A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Saito, K.

Paper Title Page
TPPT063 Higher-Order-Mode Damping of L-Band Superconducting Cavity using a Radial-Line HOM Damper 3606
 
  • K. Umemori, M. Izawa, K. Saito, S. Sakanaka
    KEK, Ibaraki
 
  For the energy recovery linacs, strong damping of higher-order-modes (HOMs) is indispensable to avoid beam breakup instabilities. We studied a new HOM damping scheme using a radial-line HOM damper with a choke structure. Both models of the radial-line damper and the TESLA-type 9-cell cavity were prepared and the HOM characteristics of this scheme were experimentally investigated. Measurement results showed a promising performance of the radial-line HOM damper.  
WPAT084 A NEW DESIGN FOR A SUPER-CONDUCTING CAVITY INPUT COUPLER 4141
 
  • H. Matsumoto, S. Kazakov, K. Saito
    KEK, Ibaraki
 
  Funding: Toshiba Electron Tube & Devices Co. Ltd., Tochigi, Otawa, Japan.

An attractive structure using capacitive coupling has been found for the input coupler for the 45 MV/m versions of the International Linear Collider (ILC) project. The coupler supports an electrical field gradient of ~1 kV/m around the rf window ceramic with 500 kW through power, a VSWR of 1.1 and a frequency bandwidth of 460 MHz. No unwanted resonances were found in the rf window near the first and second harmonics of the operation frequency.

 
TPPT056 Design of a Low Loss SRF Cavity for the ILC 3342
 
  • J.S. Sekutowicz
    DESY, Hamburg
  • L. Ge, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman, L. Xiao
    SLAC, Menlo Park, California
  • I.G. Gonin, T.K. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • Y. Morozumi, K. Saito
    KEK, Ibaraki
 
  An international team comprising DESY, KEK, JLAB, FNAL and SLAC is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TTF structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.