A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rondeau, D.J.

Paper Title Page
TPPP042 Synchrotron Radiation in eRHIC Interaction Region 2729
 
  • J. Beebe-Wang, C. Montag
    BNL, Upton, Long Island, New York
  • A. Deshpande
    Stony Brook University, Stony Brook
  • D.J. Rondeau
    Binghamton University, State University of New York, Binghamton, New York
  • B. Surrow
    MIT, Cambridge, Massachusetts
 
  Funding: Work performed under the auspices of the US DOE.

The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical properties, will be described. Finally, our initial investigation of synchrotron radiation in the eRHIC interaction region, especially a simulation of the backward scattering from the absorber, will be presented.