A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rodriguez, J.A.

Paper Title Page
TPAT022 Future Plans for the Small Isochronous Ring 1778
 
  • E.P. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  • F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • J.A. Rodriguez
    CERN, Geneva
 
  Funding: Work supported by NSF Grant #PHY-0110253 and DOE Contract DE-AC05-84ER40150.

The Small Isochronous Ring has been operational at Michigan State University since December 2003. It is used for experimental studies of the beam dynamics in high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The operational experience with SIR has proven that the ring can be successfully used to study space charge effects in accelerators. The low velocity of beam particles in the ring allowed us to achieve a high accuracy of longitudinal profile measurements that is difficult to achieve in full-size accelerators. The experimental data obtained in the ring was used for validation of multi-particle, space-charge codes CYCO and WARP3D. Inspired by the solid performance of SIR in the isochronous regime, we consider options for expanding the scope of the beam physics studied in the ring. In this paper, we outline possible future experiments and discuss required modifications of the ring optics and hardware.

 
WOPA002 Experimental Results from the Small Isochronous Ring 159
 
  • E.P. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  • F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • J.A. Rodriguez
    CERN, Geneva
 
  Funding: Work supported by NSF Grant # PHY-0110253 and DOE Contract DE-AC05-84ER40150.

The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.