A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Prin, H.

Paper Title Page
MPPT042 Field Quality and Alignment of the Series Produced Superconducting Matching Quadrupoles for the LHC Insertions 2738
 
  • N. Catalan-Lasheras, G. Kirby, R. Ostojic, J.C. Perez, H. Prin, W.  Venturini Delsolaro
    CERN, Geneva
 
  The production of the superconducting quadrupoles for the LHC insertions is advancing well and about half of the magnets have been produced. The coil size and field measurements performed on individual magnets both in warm and cold conditions are yielding significant results. In this paper we present the procedures and results of steering the series production at the magnet manufacturers and the assembly of cold masses at CERN. In particular, we present the analysis of warm-cold correlations and hysteresis of the main field multipoles, the correlation between coil sizes and geometrical field errors and the effect of permeability of magnet collars. The results are compared with the target errors for field multipoles and alignment.  
WPAE021 Short Straight Sections in the LHC Matching Sections (MS SSS): An Extension of the Arc Cryostats To Fulfill Specific Machine Functionalities 1724
 
  • V. Parma, H. Prin
    CERN, Geneva
  • fl. Lutton
    IPN, Orsay
 
  Funding: IPN-CNRS, 15 rue Georges Clémenceau 91406 ORSAY, France.

The LHC insertions require 50 specific superconducting quadrupoles, operating in boiling helium at 4.5 K and housed in individual cryostats to form the MS Short Straight Sections (MS SSS). The quadrupoles and corrector magnets are assembled in 8 families of cold masses, with lengths ranging from 5 to 11 m and weights ranging from 60 to 140 kN. The MS SSS need to fulfil specific requirements related to the collider topology, its cryogenic layout and the powering scheme. Most MS SSS are standalone cryogenic and super-conducting units, i.e. they are not in the continuous arc cryostat, and therefore need dedicated cryogenic and electrical feeding. Specially designed cryostat end-caps are required to close the vacuum vessels at each end, which include low heat in-leak Cold-to-Warm transitions (CWT) for the beam tubes and 6 kA local electrical feedthrough for powering the quadrupoles. This paper presents the design of the MS SSS cryostats as an extension of the arc cryostat’s design to achieve a standard and consequently cost-effective solution, and the design solutions chosen to satisfy their specific functionalities.