A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pordes, S.

Paper Title Page
RPAT013 Signal Processing for Longitudinal Parameters of the Tevatron Beam 1362
 
  • S. Pordes, J.L. Crisp, B.J. Fellenz, R.H. Flora, A. Para, A.V. Tollestrup
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The time profiles of the bunches in the Tevatron are obtained by sampling the output of a resistive wall current monitor with a 5GS/s, 2GHz bandwidth, Lecroy 6200 oscilloscope. The techniques for removing the effect of cable dispersion and for extending the dynamic range of the data by splitting the signal and using two input channels at different gains are described. The algorithms for taking these data in the time domain and deriving the momentum spread and longitudinal emittance are also given.

 
RPAT031 Beam Profile Measurement with Flying Wires at the Fermilab Recycler Ring 2182
 
  • M. Hu, R. H. Carcagno, J. Krider, E. Lorman, A. Marchionni, Y.M.P. Pischalnikov, S. Pordes, D. Slimmer, J. Wilson, J.R. Zagel
    Fermilab, Batavia, Illinois
 
  The Fermilab Recycler Ring is a high vacuum fixed energy antiproton storage ring with stochastic and electron cooling systems. Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement. The following note describes the system configuration, calibration and resolution of the flying wire system, as well as analysis of the transverse beam profile in the presence of both cooling systems.  
RPAT036 Measurement of the Intensity of the Beam in the Abort Gap at the Tevatron Utilizing Synchrotron Light 2440
 
  • R. Thurman-Keup, E. Lorman, T. Meyer, S. Pordes
    Fermilab, Batavia, Illinois
  • S. De Santis
    LBNL, Berkeley, California
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

The beam bunches in the Tevatron are arranged to provide gaps in time for the abort kickers to ramp to full field. The presence of even a small fraction (few 10-4)of the beam in the abort gaps can induce quenches of the superconducting magnets and inflict severe radiation damage on the silicon detectors of the experiments. Techniques for calibrating and measuring the intensity of the beam in the abort gap using synchrotron light and a gated photomultiplier tube are described. Measurements of the evolution and longitudinal profile of the beam in the abort gap are presented.