A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Plettner, T.

Paper Title Page
TPAE014 Optical Phase Locking of Modelocked Lasers for Particle Accelerators 1389
 
  • T. Plettner, S. Sinha, J. Wisdom
    Stanford University, Stanford, Califormia
  • E.R. Colby
    SLAC, Menlo Park, California
 
  Funding: Department of Energy DE-FG03-97ER41043, DARPA DAAD19-02-1-0184.

Particle accelerators require precise phase control of the electric field through the entire accelerator structure. Thus a future laser driven particle accelerator will require optical synchronism between the high-peak power laser sources that power the accelerator. The precise laser architecture for a laser driven particle accelerator is not determined yet, however it is clear that the ability to phase-lock independent modelocked oscillators will be of crucial importance. We report the present status on our work to demonstrate long term phaselocking between two modelocked lasers to within one dregee of optical phase and describe the optical synchronization techniques that we employ.

 
TPAE015 Laser and Particle Guiding Micro-Elements for Particle Accelerators 1434
 
  • T. Plettner, R.M. Gaume, J. Wisdom
    Stanford University, Stanford, Califormia
  • J.E. Spencer
    SLAC, Menlo Park, California
 
  Funding: Department of Energy contract DE-AC02-76SF00515, DARPA contract DAAD19-02-1-0184.

Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

 
TPAE029 High-Harmonic Inverse Free-Electron-Laser Interaction at 800 nm 2113
 
  • C.M.S. Sears, E.R. Colby, B.M. Cowan, R. Siemann, J.E. Spencer
    SLAC, Menlo Park, California
  • R.L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
 
  Funding: This work supported by Department of Energy contracts DE-AC03-76SF00515 (SLAC) and DE-FG03-97ER41043-II (Stanford).

The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator forμbunching of beams for laser acceleration experiments*,**. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800 nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We will also discuss diagnostics for obtaining beam overlap and statistical techniques used to account for machine drifts and analyze the data.

*W. D. Kimura, et. al., Phys. Rev. S.T. Acc. & Beams 4 101301 (2001). ** P. Musumeci, et. al., AAC 2004 Proceedings. Pg 170.

 
TOPA008 First Observation of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space 650
 
  • T. Plettner, R.L. Byer, T.I. Smith
    Stanford University, Stanford, Califormia
  • E.R. Colby, B.M. Cowan, C.M.S. Sears, R. Siemann, J.E. Spencer
    SLAC, Menlo Park, California
 
  Funding: Department of Energy DE-FG03-97ER41043.

We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process.