A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Park, P.C.D.

Paper Title Page
WPAP021 Status of PPI (Pohang Photo-Injector) for PAL XFEL 1733
 
  • S.J. Park, C. Kim, I.S. Ko, J.-S. Oh, Y.W. Parc, P.C.D. Park, J.H. Park
    PAL, Pohang, Kyungbuk
  • X.J. Wang
    BNL, Upton, Long Island, New York
 
  Funding: Supported by the POSCO and the MOST, Korea.

A X-Ray Free Electron Laser (XFEL) project based on the Self-Amplified Spontaneous Emission (SASE) is under progress at the Pohang Accelerator Laboratory (PAL). One of the critical R&D for the PAL XFEL* is to develop the Pohang Photo-Injector (PPI) which is required to deliver electron beams with normalized emittance < 1.5 mm-mrad. In order to achieve the required beam quality with high stability and reliability, we will use photocathode with quantum efficiency > 0.1 % and long lifetime. This will greatly lessen the laser energy requirement for producing flat-top UV pulses, and open the possibility of using only regenerative amplifiers (RGAs) to drive the photocathode RF gun. The RGAs can produce mJs output with much better stability than multi-pass amplifiers. Both the Cs2Te and Mg are under consideration for the possible photo-cathode. To demonstrate the suitability of the Mg and Cs2Te for the future 4th generation light source application, an improved BNL-type S-band RF gun with a high-performance load-lock system will be developed for the PPI. In this article, we present the design concept of the PPI, the expected performance, and report on its development status.

*J.S. Oh, S.J. Park et al., "0.3-nm SASE-FEL at PAL," NIM A528, 582 (2004); S.J. Park, J.S. Oh et al., "Design Study of Low-Emittance Injector for SASE XFEL at Pohang Accelerator Laboratory," FEL2004, Italy, 2004.

 
ROPB005 Recent Experiment Results on Fast Ion Instability at 2.5 GeV PLS 466
 
  • E.-S. Kim, Y.J. Han, J.Y. Huang, I.S. Ko, P.C.D. Park, S.J. Park
    PAL, Pohang, Kyungbuk
  • H. Hukuma, H. Ikeda
    KEK, Ibaraki
 
  We present recent experiment results on the fast ion instability that were performed at the PLS storage ring. With higher vacuum pressures of three orders of magnitude than nominal one by He gas injection into the ring, increases of a factor of around three in the vertical beam size were observed by interferometer system. From the various measurement results, we estimated growth times for the instability as a funcion of vacuum pressure and beam current. We also compared the results with those of the computer simulations and analytical calculations.