A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pappas, G.C.

Paper Title Page
WPAE079 Dual Power Supplies for PEP-II Injection Kickers 4045
 
  • J. Olszewski, F.-J. Decker, R.H. Iverson, A. Kulikov, G.C. Pappas
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.

Originally the PEP-II injection kickers where powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independant power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of five since there are no long cables that have to be charged. The kickers are now independantly adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

 
ROAB008 Solid-State Modulators for RF and Fast Kickers 637
 
  • E.G. Cook, G.L. Akana, E. J. Gower, S.A. Hawkins, B. C. Hickman
    LLNL, Livermore, California
  • C. A. Brooksby
    Bechtel Nevada, Los Alamos, New Mexico
  • R. Cassel, J. E. De Lamare, M.N. Nguyen, G.C. Pappas
    SLAC, Menlo Park, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.