A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mustapha, B.

Paper Title Page
TPAT028 TRACK: The New Beam Dynamics Code 2053
 
  • B. Mustapha, V.N. Aseev, E.S. Lessner, P.N. Ostroumov
    ANL, Argonne, Illinois
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. W-31-109-ENG-38.

The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and simulation of future proton and heavy-ion linacs at TRIUMF, Fermilab, JLAB and LBL.

*P.N. Ostroumov and K.W. Shepard. Phys. Rev. ST. Accel. Beams 11, 030101 (2001). **P.N. Ostroumov, V. N. Aseev, B. Mustapha. Phys. Rev. ST. Accel. Beams, Volume 7, 090101 (2004).

 
TPAT029 RIA Beam Dynamics: Comparing TRACK to IMPACT 2095
 
  • B. Mustapha, V.N. Aseev, P.N. Ostroumov
    ANL, Argonne, Illinois
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. W-31-109-ENG-38.

In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and IMPACT. A very good agreement was obtained which represents another validation of both codes.