A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Murray, S.N.

Paper Title Page
MOPB005 Advances in the Performance of the SNS Ion Source 472
 
  • R.F. Welton, S.N. Murray, M.P. Stockli
    ORNL, Oak Ridge, Tennessee
  • R. Keller
    LBNL, Berkeley, California
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The ion source developed for the Spallation Neutron Source* (SNS) is a radio frequency, multi-cusp source designed to produce ~ 40 mA of H- with a normalized rms emittance of less than 0.2 pi mm mrad. To date the source has been utilized in the commissioning of the SNS accelerator, delivering beams of 10-50 mA with duty-factors of typically ~0.1% for operational periods of several weeks and availabilities now ~99%. Ultimately the SNS facility will require beam duty-factors of 6% (1 ms pulse length, 60 Hz repetition rate, 21 day run-period). Over the last year, several experiments were performed in which the ion source was continuously operated at full duty-factor and maximum beam current on a dedicated test stand. Recently, a breakthrough in our understanding of the Cs release process has led to the development of a new source conditioning technique which resulted in a dramatic increase in beam persistence with time. Average H- beam attenuation rates have been improved from ~5 mA/day to ~0.4 mA/day, allowing beams in excess of 30 mA to be delivered continuously at full duty factor for periods of ~20 days. Prior to this development, full duty factor beams could only be sustained for periods of several hours.