A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mihalcea, D.

Paper Title Page
TPAT039 Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations 2601
 
  • B. Terzic, C.L. Bohn, D. Mihalcea
    Northern Illinois University, DeKalb, Illinois
  • I.V. Pogorelov
    LBNL, Berkeley, California
 
  Funding: Work of B.T., D.M. and C.L.B. is supported by Air Force contract FA9471-040C-0199. Work of I.V.P. is supported by the U.S. Department of Energy contract DE-AC03-76SF00098.

We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

Corresponding author: B.T. (bterzic@nicadd.niu.edu)

 
RPAT091 Longitudinal Electron Bunch Diagnostics Using Coherent Transition Radiation 4254
 
  • D. Mihalcea, C.L. Bohn
    Northern Illinois University, DeKalb, Illinois
  • U. Happek
    UGA, Athens, Georgia
  • P. Piot
    Fermilab, Batavia, Illinois
 
  The longitudinal charge distribution of electron bunches in the Fermilab A0 photo-injector was determined by using the coherent transition radiation produced by electrons passing through a thin metallic foil. The auto-correlation of the transition radiation signal was measured with a Michelson type interferometer. The response function of the interferometer was determined from measured and simulated power spectra for low electron bunch charge and maximum longitudinal compression. Kramers-Kroning technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms).