A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

McCrory, E.S.

Paper Title Page
TPAP036 Fitting the Luminosity Decay in the Tevatron 2434
 
  • E.S. McCrory, V.D. Shiltsev, A.J. Slaughter, A. Xiao
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

This paper explores the various ways in which the decay of the luminosity in the Tevatron have been fit. The standard assumptions of a fixed-lifetime exponential decay are only appropriate for very short time intervals. A "1/time" funcional form fits rather well, and is supported by analytical derivations. A more complex form, assuming a time-varying lifetime, produces excellent results. Changes in the luminosity can be factored into two phenomena: The luminosity burn-off rate, and the burn-off rate from non-luminosity effects. The luminous and the non-luminous burn rate are shown for stores in the Tevatron.

 
TPAP037 Monte Carlo of Tevatron Operations, Including the Recycler 2479
 
  • E.S. McCrory
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

A Monte Carlo model, which was originally developed for "Run I" of the Tevatron Collider, has been enhanced in many ways, most notably, to incorporate the effect of the Recycler Ring. This model takes into account reasonable random fluctuations in the performance of the Collider, and normal interruptions in operation of each accelerator due to downtime. Optimization of the integrated luminosity delivered to the experiments is based on when to end the store and how to deal with the anitprotons. Preliminary results show that a 20% gain in integrated luminosity in the Collider results from using the Recycler for one-third of the anitprotons in each store. As electron cooling becomes operative in the Recycler, Collider performance improves by as much as a factor of two.

 
TPAP038 Characterizing Luminosity Evolution in the Tevatron 2536
 
  • E.S. McCrory, V.D. Shiltsev
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

We derive an approximate form of a luminosity evolution in a high intensity hadron collider taking into account the most important phenomena of intrabeam scattering (IBS), beam burn-up due to luminosity and beam-beam effects. It is well known that an exponential decay does not describe luminosity evolution very well unless the lifetime is allowed to vary with time. However, a "1/time" evolution, which this derivation shows is a good approximation, fits data from the Tevatron well.

 
FPAT012 Tevatron Beam Lifetimes at Injection Using the Shot Data Analysis System 1279
 
  • A. Xiao, T.B. Bolshakov, P. Lebrun, E.S. McCrory, V. Papadimitriou, A.J. Slaughter
    Fermilab, Batavia, Illinois
 
  The purpose of the Shot Data Acquisition and Analysis (SDA) system is to provide summary data on the Fermilab RunII accelerator complex and provide related software for detailed analyses. In this paper, we discuss such a specific analysis on Tevatron beam lifetimes at injection. These results are based on SDA data, tools and methodology. Beam lifetime is one of our most important diagnostics. An analysis of it can give information on intra beam scattering, aperture limitations, instabilities and most importantly beam-beam effects. Such an analysis gives us a better understanding of our machine, and will lead to an improved performance in the future.