A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Luh, D.-A.L.

Paper Title Page
TPPE063 Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift 3603
 
  • G.A. Mulhollan, J.C.B. Bierman
    Saxet, Austin, Texas
  • A. Brachmann, J.E. Clendenin, E.G. Garwin, R.E. Kirby, D.-A.L. Luh, T.V.M. Maruyama
    SLAC, Menlo Park, California
  • R.X.P. Prepost
    UW-Madison/PD, Madison, Wisconsin
 
  Funding: Work at Saxet Surface Science, SLAC and the University of Wisconson is supported by the following U.S. DOE grants respectively: DE-FG02-04ER86231, DE-AC02-76SF00515 and DE-AC02-76ER00881.

Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile Preliminary measurements have been carried out on bulk GaAs. As expected, the yield change far from the bandgap is quite large. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. For a bias which enhances emission, the yield nearly doubles. For a bias which diminishes emission, the yield is approximately one half of the zero bias case. The size of the bias to cause an appreciable effect is rather small reflecting the low drift kinetic energy in the zero bias case.

 
WPAP058 The ILC Polarized Electron Source 3420
 
  • A. Brachmann, J.E. Clendenin, E.G. Garwin, R.E. Kirby, D.-A.L. Luh, T.V.M. Maruyama, D.C. Schultz, J. Sheppard
    SLAC, Menlo Park, California
  • R.X.P. Prepost
    UW-Madison/PD, Madison, Wisconsin
 
  Funding: This work is supported by U.S. DOE contracts DE-AC02-76SF00515 (SLAC) and DE-AC02-76ER00881 (UW).

The SLC polarized electron source (PES) can meet the expected requirements of the International Linear Collider (ILC) for polarization, charge and lifetime. However, experience with newer and successful PES designs at JLAB, Mainz and elsewhere can be incorporated into a first-generation ILC source that will emphasize reliability and stability without compromising the photocathode performance. The long pulse train for the ILC may introduce new challenges for the PES, and in addition more reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler load-lock system. The outline of the R&D program currently taking shape at SLAC and elsewhere is discussed. The principal components of the proposed ILC PES, including the laser system necessary for operational tests, are described.