A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lehrach, A.

Paper Title Page
TPPE030 A Method to Polarize Stored Antiprotons to a High Degree 2158
 
  • A. Lehrach, S. Martin, F. Rathmann
    FZJ, Julich
  • P. Lenisa
    INFN-Ferrara, Ferrara
  • I.N. Meshkov, A.O. Sidorin, A.V. Smirnov
    JINR, Dubna, Moscow Region
  • C. Montag
    BNL, Upton, Long Island, New York
  • E. Steffens
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • C.-A. Wiedner
    UGS, Langenbernsdorf
 
  The PAX collaboration proposes a method to produce intense beams of polarized antiprotons. Polarized antiprotons can be produced in a storage ring by spin-dependent interaction in a purely hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies of about 50-100 MeV using a dedicated large acceptance ring, the antiproton polarization would reach P=0.2-0.4. In the presentation, beside a description of the polarization technique and its potentiality, a description of the ideal characterstics of the antiproton polarizer will be given.

hep-ph/0411046

 
FPAE001 Design Work for the High-Energy Storage Ring for Antiprotons of the Future GSI Project 776
 
  • A. Lehrach, S. An, K. Bongardt, J. Dietrich, R. Eichhorn, B. Lorentz, R. Maier, S. Martin, D. Prasuhn, Y. Senichev, E.A. Senicheva, H. Stockhorst, R. Tölle, E. Zaplatin
    FZJ, Jülich
  • O. Boine-Frankenheim, A. Dolinskii, M. Steck
    GSI, Darmstadt
  • B. Gålnander, D. Reistad
    TSL, Uppsala
  • F.H. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik,, Bonn
 
  The High-Energy Storage Ring (HESR) of the future international Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton cooler and storage ring in the momentum range from 1.5 to 15 GeV/c. The design work for the HESR is organized by a consortium with scientists from FZ Jülich, GSI Darmstadt and TSL Uppsala. An important feature of the new facility is the combination of phase space cooled beams with internal targets, resulting in demanding beam parameter in two operation modes: high luminosity mode with beam intensities up to few times 1011, and high resolution mode with a momentum spread down to 10-5, respectively. To reach these beam parameters very powerful phase space cooling is needed, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. In this paper an overview of the design work is given, focusing on recent developments and planned R&D work.