A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kushnir, V.A.

Paper Title Page
TPPE051 The Optimization of the Electron Injector Resonance System Based on the Evanescent Oscillations 3170
 
  • S.A. Perezhogin, M.I. Ayzatskiy, K. Kramarenko, V.A. Kushnir, V.V. Mytrochenko, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
  The report presents the results of the bunching system optimization and electrons motion simulation in the compact S – band injector. The injector consists of the low-voltage diode electron gun and optimized bunching system based on the resonant system with the evanescent oscillations. The amplitude of RF electrical field is increased along the axis of the bunching system. The resonance system optimization allows to obtain electron bunches with the phase length less than 10° (for 70 % particles) at the injector exit.  
WPAP027 RF Electron Gun with Driven Plasma Cathode 1991
 
  • I.V. Khodak, V.A. Kushnir
    NSC/KIPT, Kharkov
 
  It’s known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.  
FPAE062 Beam Parameters of a Two-Sectional Electron Linac with the Injector Based on a Resonance System with Evanescent Oscillations 3567
 
  • V.V. Mytrochenko, M.I. Ayzatskiy, V.N. Boriskin, A. Dovbnya, I.V. Khodak, V.A. Kushnir, A. Opanasenko, S.A. Perezhogin, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
  The S-band electron linac has been designed at NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of the four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron. The peculiarity of the linac is using of the injector based on evanescent oscillations. The report presents both simulation results of self-consistent particle dynamics in the linac and results of measurement of beam parameters.