A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kmak, R.T.

Paper Title Page
RPAE004 Parametric Mechanical Design of New Insertion Devices at the APS 889
 
  • J.H. Grimmer, R.T. Kmak
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

Three permanent-magnet, planar, hybrid ID designs have recently been completed at the APS. The periods of the devices are 2.7 cm, 3.0 cm and 3.5 cm with nominal lengths of 2.4 m. Several design studies were performed for the initial 2.7 cm period device to investigate the utility of various design features. Then a parametric solid model for the initial device was developed and value engineered to minimize manufacturing, assembly and tuning costs. The model allowed the very rapid design of subsequent devices of similar periods and allowed commonality of several components of the IDs. This design family incorporates a low-cost method of pole retention and registration. Poles are secured by screws in two holes tapped into each pole. Pole location is registered by means of two small dowel pins for each pole in mating holes reamed into each pole and a base plate common to the poles and magnets. This base plate is flexible in bending along its length so shimming behind it can be used to accurately change the height of a pair of poles for tuning. Another feature of the design is modular construction to allow each device to be used full-length or shortened to a nominal 2.1 m length for use in APS "canted undulator" sectors.