A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kimura, W.D.

Paper Title Page
TPAE057 A Multibunch Plasma Wakefield Accelerator 3384
 
  • E.K. Kallos, T.C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • M. Babzien, I. Ben-Zvi, K. Kusche, P.I. Pavlishin, I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York
  • W.D. Kimura
    STI, Washington
  • F. Zhou
    UCLA, Los Angeles, California
 
  We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.  
TPAT034 Manipulations of Double Electron Beams within One RF Period for Seeded SM-LWFA Experiment 2312
 
  • F. Zhou, D. Cline
    UCLA, Los Angeles, California
  • M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York
  • W.D. Kimura
    STI, Washington
 
  Funding: Work supported by U.S. DOE.

Although seeded SM-LWFA only requires one electron beam to initiate the laser wakefield, it would be highly desirable to have a second electron beam traveling after the first one to probe the accelerated electrons. To create and preserve significant amount of wakefield in the STELLA SM-LWFA experiment, the first e-beam needs to be tiny (<40 microns FWHM) in size and short in length within the plasma. To probe the wakefield which is damped within 10 ps for certain plasma density, the separation between the first and second beams needs to be within one RF period and the second e-beam must have smaller energy spread and smaller size. Design of double beams in one RF period to meet the strict requirements and the preliminary beam study at BNL-ATF facility are presented. The scheme of double beams with ATF bunch compressor is also discussed.