A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Johnson, E.D.

Paper Title Page
RPAE058 NSLS-II Injection Concept 3408
 
  • T.V. Shaftan, A. Blednykh, S. Chouhan, E.D. Johnson, S.L. Kramer, S. Krinsky, J.B. Murphy, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T. Tanabe, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Currently the facility upgrade project is under progress at the NSLS (Brookhaven National Laboratory). The goal of NSLS-II is a 3 GeV ultra-low emittance storage ring that will provide three orders of magnitude increase in brightness over the present NSLS X-ray beamlines. The low emittance of the high brightness ring lattice results in quite short lifetimes, which makes operation in top-off injection mode a necessity. The NSLS-II injection system must be able to provide an electron beam at the high repetition rate and with good injection efficiency. In this paper we present a concept of the NSLS-II injection system and discuss conditions and constraints for the injector design. Various injection system parameters are estimated from the point of view of SR user demand.  
RPAE059 Design of 3 GeV Booster for NSLS-II 3473
 
  • T.V. Shaftan, E.D. Johnson, J.B. Murphy, I.P. Pinayev, J. Rose, X.J. Wang
    BNL, Upton, Long Island, New York
 
  We present preliminary design of full energy booster for NSLS-II. In the paper we analyze single- and multi-bunch modes of the booster operations. The booster lattice consists of 24 TME cells with two dispersion suppressors. Initial design of the magnets, power supply specifications, Eddy current contribution to the booster chromaticity are discussed.  
RPAE056 NSLS II: The Future of the NSLS 3345
 
  • J.B. Murphy, J. Bengtsson, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S. Chouhan, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E.D. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, N.A. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886

The National Synchrotron Light Source at BNL was the first dedicated light source facility and it has now operated for more than 20 years. During this time the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultra-high brightness (~10E21) electron storage ring, tailored to the 0.3-20 KeV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.