A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Huening, M.

Paper Title Page
TPPE044 Upgrade of the Fermilab/NICADD Photoinjector Laboratory 2848
 
  • P. Piot, H. Edwards
    Fermilab, Batavia, Illinois
  • M. Huening
    DESY, Hamburg
  • T. W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • J.L. Li, R. Tikhoplav
    Rochester University, Rochester, New York
 
  Funding: This work was supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE, and by NICADD.

The Femilab/NICADD photoinjector laboratory (FNPL) is a 16 MeV electron accelerator dedicated to beam dynamics and advanced accelerator studies. FNPL will soon be capable of operating at 50 MeV, after the installation of a high gradient TESLA cavity. In this paper we present the foreseen design for the upgraded facility along with its performance. We discuss the possible application of 50 MeV beam including the possible use of FNPL as an injector for the superconducting module and test facility (SM&TF).

 
WPAP042 Progress on Using NEA Cathodes in an RF Gun 2708
 
  • R.P. Fliller, T. G. Anderson, H. Edwards
    Fermilab, Batavia, Illinois
  • H. Bluem, T. Schultheiss
    AES, Medford, NY
  • M. Huening
    DESY, Hamburg
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: This work was supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE and by NICADD. AES personnel were supported under DOE SBIR contract #DE-FG02-04ER838.

RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.