A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hotchi, H.

Paper Title Page
MPPE004 Evaluation of Nonlinear Effects in the 3GeV Rapid Cycling Synchrotron of J-PARC 916
 
  • H. Hotchi, F. Noda, N. Tani
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • J. Kishiro, S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
 
  In order to accelerate an ultra-high intense beam with small particle losses, the 3GeV Rapid Cycling Synchrotron (RCS) of J-PARC, which is being constructed at JAERI, has a large acceptance. In this case the nonlinearity associated with the motion of particles at large amplitude and large momentum deviation plays a significant role. The sources of nonlinear magnetic fields in RCS are mainly connected with the fringe of the main dipole and quadrupole magnets and with the sextupole magnets used for the linear chromaticity correction. In this paper, we will present simulation results including such nonlinear effects. In addition, the possible correction scheme for the induced transverse resonances will be discussed.  
MPPE005 Dynamic Aperture and Resonance Correction for JPARC-RCS 979
 
  • A.Y. Molodojentsev, E. Forest, S. Machida
    KEK, Ibaraki
  • H. Hotchi, F. Noda, M.J. Shirakata, Y. Shobuda, H. Suzuki, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
 
  Main intrinsic field nonlinearities, which are common for synchrotrons with large aperture, are the nonlinear field of the bending magnets, the fringing field of the magnets and the sextupole field nonlinearity, used for the chromaticity correction. The particle motion in the ring bending magnets has been analyzed by two methods: (1) by direct integration of the particle motion equations in the 3D magnetic field (Tosca output), based on the 4th order Runge-Kutta integrator and (2) by determination the transfer 8th order map of the bending magnet by using the Gaussian wavelet in the 3D space. The second technique allows us to use powerful tools such as the normal form analysis, to define the resonance driving terms, which can be used for the resonance correction. As the result of this study it was shown that the main limitation of the RCS dynamic aperture can be caused by the structure normal sextupole-order resonance and the normal octupole-order resonance. Other high-order resonances have smaller effects on the particles motion than the resonances mentioned above. The correction scheme to improve the dynamic aperture near the normal sextupole-order resonance has been analyzed.  
MPPE043 The Status of Optics Design and Beam Dynamics Study in J-PARC RCS 2759
 
  • F. Noda, N. Hayashi, H. Hotchi, J. Kishiro, P.K. Saha, Y. Shobuda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
 
  The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.  
FPAE067 Present Design and Calculation for the Injection-Dump Line of the RCS at J-PARC 3739
 
  • P.K. Saha, N. Hayashi, H. Hotchi, Y. Irie, F. Noda, T. Takayanagi
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, I. Sakai
    KEK, Ibaraki
 
  The RCS(rapid cycling synchrotron) of J-PARC(Japan proton accelerator research complex) acts as an injector to the main ring as well as a high-power beam for the spallation neutron source at a repetition rate of 25 Hz, where at present the injection and the extraction beam energy are chosen to be 0.181 GeV and 3.0 GeV, respectively. The present work concerns on the present design and calculations for the injection-dump line of the RCS, which includes, 1) an accurate aperture list of all elements taking into account a wide range of the betatron tune, effect of changing injection modes, multiple trajectories of different particles after the charge-exchange foil( like H0 from the H- and H- beam itself)and 2) an accurate estimation of the uncontrolled beam losses especially from the H0-excited states, multiple coulomb scattering at the charge-exchange foil and also the lorentz stripping loss at the septum magnets so as to optimize them concerning mainly the radiation issues as well as for the hands-on maintenance.