A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hartouni, E.P.

Paper Title Page
RPAE014 High-Energy Compton Scattering Light Sources
 
  • F.V. Hartemann, S.G. Anderson, C.P.J. Barty, K. Crane, D.J. Gibson, E.P. Hartouni, A.M. Tremaine
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma2-scaling shows that for low emittance electron beams (1 nC, 1 mm.mrad, < 1 ps, > 100 MeV), and tabletop laser systems (1-10 J, 5 ps) the x-ray peak brightness can exceed 1023 photons / mm2 x mrad2 x s x 0.1% bandwidth near 1 MeV; this is confirmed by 3D codes that have been benchmarked against Compton scattering experiments performed at LLNL. Important nonlinear effects, including spectral broadening, are also taken into account in our analysis; they show that there is an optimum laser pulse duration in this geometry, of the order of a few picoseconds, in sharp contrast with the initial approach to laser-driven Compton scattering sources where femtosecond laser systems were thought to be mandatory.