A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gullotta, J.

Paper Title Page
TPAT095 Beam Induced Pressure Rise at RHIC 4308
 
  • S.Y. Zhang, J.G. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R.C. Lee, V. Litvinenko, W.W. MacKay, T. Nicoletti, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, L. Snydstrup, P. Thieberger, D. Trbojevic, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

Work performed under the auspices of the US Department of Energy.

 
RPAT028 RHIC BPM System Modifications and Performance 2021
 
  • T. Satogata, R. Calaga, P. Cameron, P. Cerniglia, J. Cupolo, A.J. Curcio, W.C. Dawson, C. Degen, J. Gullotta, J. Mead, R.J. Michnoff, T. Russo, R. Sikora
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region and sextupole beam-based alignment efforts. We also summarize performance of improved million-turn TBT acquisition channels for nonlinear dynamics and echo studies.