A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gollwitzer, K.

Paper Title Page
MPPE056 Studies to Increase the Anti-Proton Transmission from the Target to the Debuncher Ring 3357
 
  • I. Reichel, M.S. Zisman
    LBNL, Berkeley, California
  • K. Gollwitzer, S.J. Werkema
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under Contracts No. DE-AC03-76SF00098 and DE-AC02-76CH03000.

The AP2 beamline at Fermilab transports anti-protons from the production target to the Debuncher ring. The measured admittance of the Debuncher ring and the theoretical aperture of the line are larger than the size of the transmitted beam. Extensive tracking studies were done using the Accelerator Toolbox (AT) to understand the sources of the difference. As simulations pointed to chromatic effects being a source of problems, measurements were done to study this. Several possible remedies were studied including adding sextupoles to the line to reduce the chromatic effects.

 
TPAP030 Tevatron Alignment Issues 2003-2004 2146
 
  • J.T. Volk, J. Annala, L. Elementi, N.M. Gelfand, K. Gollwitzer, J.A. Greenwood, M.A. Martens, C.D. Moore, A. Nobrega, A.D. Russell, T. Sager, V.D. Shiltsev, R. Stefanski, M.J. Syphers, G. Wojcik
    Fermilab, Batavia, Illinois
 
  Funding: U.S. Department of Energy under contract No. DE-AC02-76CH03000.

It was observed during the early part of Run II that dipole corrector currents in the Tevatron were changing over time. Measurement of the roll for dipoles and quadrupoles confirmed that there was a slow and systematic movement of the magnets from their ideal position. A simple system using a digital protractor and laptop computer was developed to allow roll measurements of all dipoles and quadrupoles. These measurements showed that many magnets in the Tevatron had rolled more than 1 milli-radian. To aid in magnet alignment a new survey network was built in the Tevatron tunnel. This network is based on the use of free centering laser tracker. During the measurement of the network coordinates for all dipole, quadrupole and corrector magnets were obtained. This paper discusses roll measurement techniques and data, the old and new Tevatron alignment network.