A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gallardo, J.C.

Paper Title Page
TPPP040 Front-End Design Studies for a Muon Collider 2610
 
  • R.C. Fernow, J.C. Gallardo
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by U.S. Department of Energy.

Using muons instead of electrons is a promising approach to designing a lepton-lepton collider with energies beyond that available at the proposed ILC. At this time a self-consistent design of a high-luminosity muon collider has not been completed. However, a lot of progress has been made in simulating cooling and parts of other systems that could play a role in an eventual collider design. In this paper we look at front-end system designs that begin with a single pion bunch produced from a high power mercury target. We present ICOOL simulation results for phase rotation, charge separation, and pre-cooling of the muon beams. A design is presented for a single-frequency phase rotation system that can transmit 0.47 muons per incident proton on the target. A bent solenoid can be used for high-efficiency separation of the positive and negative muon beams.

 
TPPP047 New and Efficient Neutrino Factory Front-End Design 2986
 
  • J.C. Gallardo, J.S. Berg, R.C. Fernow, H.G. Kirk, R. Palmer
    BNL, Upton, Long Island, New York
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
  • K. Paul
    Muons, Inc, Batavia
 
  Funding: Work supported by U.S. Department of Energy.

As part of the APS Joint Study on the Future of Neutrino Physics* we have carried out detailed studies of the Neutrino Factory front-end. A major goal of the new study was to achieve equal performance to our earlier feasibility studies** at reduced cost. The optimal channel design is described in this paper. New innovations included an adiabatic buncher for phase rotation and a simplified cooling channel with LiH absorbers. The linear channel is 295 m long and produces 0.17 muons per proton on target into the assumed accelerator transverse acceptance of 30 mm and longitudinal acceptance of 150 mm.

*APS Multi-Divisional Study of the Physics of Neutrinos, http://www.aps.org/neutrino/. **S.Ozaki, R.B.Palmer, M.Zisman and J.C.Gallardo, edts., Tech. Rep., BNL-52623 (2001), http://www.cap.bnl.gov/mumu/studyii/FS2-report.html.