A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Fabris, A.

Paper Title Page
WPAT070 500 MHz Coaxial Transition Between the ELETTRA Input Coupler and the Transmission Waveguide 3810
 
  • C. Pasotti, A. Fabris, M. Svandrlik
    ELETTRA, Basovizza, Trieste
 
  The investigations have shown that the 500 MHz ELETTRA input power coupler can safely sustain more than 150 KW. The critical component limiting the increase of the trasmitted RF power is the connection element between the input power coupler and the transmission line. An optimized design has been studied to overcome this limit. During the optimization process, the entire RF chain (input power coupler, connection element and transition to the standard waveguide WR1800) has been verified. The analysis has been carried out to check the performances of the whole lay-out in terms of efficiency of transmitted power and sensitivity to any signal coming from the cavity ( HOMs included). A prototype with an improved cooling system has been realized and tested.  
RPAE085 ELETTRA Present and Future Upgrades 4170
 
  • C.J. Bocchetta, D. Bulfone, G. D'Auria, G. De Ninno, B. Diviacco, A. Fabris, R. Fabris, M. Ferianis, A. Gambitta, F. Iazzourene, E. Karantzoulis, M. Lonza, F.M. Mazzolini, M. Svandrlik, L. Tosi, R. Visintini, D.Z. Zangrando
    ELETTRA, Basovizza, Trieste
 
  During the last year, the 3rd generation synchrotron light source ELETTRA has benefitted from several upgrades which have been implemented in the frame of a project to enhance the quality of the light source. The superconducting 3rd harmonic cavity, the feedbacks, the realignment of the whole ring and other improved devices have allowed to further, significantly optimize the beam stability and lifetime, as well as the operability and uptime of the facility. At the same time two large scale projects are underway that will change the perspectives of the whole laboratory, namely the full energy booster injector and the single pass X-ray FEL FERMI@Elettra, based on the existing linac. Their status will be presented here together with the overview of the existing light source.