A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dechow, D.R.

Paper Title Page
TPAT026 Synergia: An Advanced Object-Oriented Framework for Beam Dynamics Simultation 1925
 
  • D.R. Dechow, P. Stoltz
    Tech-X, Boulder, Colorado
  • J.F. Amundson, P. Spentzouris
    Fermilab, Batavia, Illinois
 
  Synergia is a 3-D, parallel, particle-in-cell beam dynamics simulation toolkit. At heart of the software development effort is the integration of two extant object-oriented accelerator modeling frameworks–Impact written in Fortran 90 and mxyptlk written in C++–so that they may be steered by a third, a more flexible human interface framework, written in Python. Recent efforts are focused on the refactoring of the Impact-Fortran 90 codes in order to expose more loosely-coupled interfaces to the Python interface framework.  
TPAT060 Overview of the Synergia 3-D Multi-Particle Dynamics Modeling Framework 3490
 
  • P. Spentzouris, J.F. Amundson
    Fermilab, Batavia, Illinois
  • D.R. Dechow
    Tech-X, Boulder, Colorado
 
  Funding: Scientific Discovery through Advanced Computing project, "Advanced Computing for 21st Century Accelerator Science and Technology," U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework and model benchmarks we obtained by comparing to semi-analytic results and other codes. We also present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment.