A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Chaput, R.

Paper Title Page
WPAP001 HELIOS, the Linac Injector of SOLEIL: Installation and First Results 755
 
  • B. Pottin, R. Chaput, J.-P. Pollina, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  • D. Jousse, J.-L. Pastre, A.S. Setty
    THALES, Colombes
 
  Funding: SOLEIL

HELIOS is the Hundred MeV Electron Linac Injector Of SOLEIL the new French SR facility. The Linac is constructed by THALES as a “turn key” equipment on the basis of SOLEIL’s APD design. The Linac injector is composed of a triode gun (90 kV, 500 mA), a prebuncher (10 kV, 200 W), a buncher (SW, 15 MeV, 5 MW) focalised by a solenoid and two accelerating sections (TW, 2pi/3, 45 MeV, 12 MW) feeded by 2 klystrons (35 MW). The major Linac components have been previously tested at THALES factory and the installation on the site has begun from October 2004. After a brief description of the building construction, the tests of the Linac components and operating modes will be detailed. The commissioning with beam is planned on March; the results on beam qualities will be presented: energy spread, emittance, and beam dynamics along the Linac.

 
RPAE031 Progress Report on the Construction of SOLEIL 2203
 
  • M.-P. Level, J.C. Besson, P. Brunelle, R. Chaput, A. Dael, J.-C. Denard, J.-M. Filhol, J.M. Godefroy, C. Herbeaux, V. Le Roux, P. Marchand, A. Nadji, L.S.N. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
  Funding: SOLEIL

This paper reports the progress achieved in the construction of the accelerators of SOLEIL. Started in January 2002, the construction comes near to its end and the installation of the equipment on the site has begun from September 2004 and shall be completed within one year. The progress on the LINAC and Booster are reported separately, therefore this paper will focus more particularly on the Storage Ring: Dedicated measuring benches have been built to perform the magnetic measurements on all the magnets and the results of measurements have been analysed in term of particle dynamics behaviour in order to prepare the operating point for the commissioning. The status of innovative developments engaged from the beginning as super-conducting RF cavities, NEG coated vacuum chambers and BPMs digital electronics will be described. The construction of the first 6 insertion devices is also well advanced and will be reported. Finally, the machine impedance budget was further evaluated with consequently, still some modifications to the design of some components.