A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Anhalt, B.

Paper Title Page
TPAT079 Importance of the Linear Coupling and Multipole Compensation of Long-Range Beam-Beam Interactions In Tevatron 4039
 
  • J. Shi, B. Anhalt
    KU, Lawrence, Kansas
 
  Funding: The US Department of Energy under Grant No. DE-FG02-04ER41288.

In Tevatron, serious long-range beam-beam effects are due to many parasitic collisions that are distributed around the ring. Because of this non-localized nature of long-range beam-beam interactions, the multipole compensation with one-turn or sectional maps aims a global compensation of long-range beam-beam interactions. Since nonlinear beam dynamics in a storage ring can usually be described by a one-turn map that contains all global information of system nonlinearities, by minimizing nonlinear terms of the maps order-by-order with a few groups of multipole correctors, one could reduce the nonlinearity globally. Since a large beam separation is typical at parasitic points, in the phase-space region that is relevant to the beam, long-range beam-beam interactions can be expanded into a Taylor series around the beam separation and be included into the one-turn map for the global compensation. To examine the effect of this multipole compensation scheme, the emittance growth of both p and pbar beam in Tevatron were studied with a beam-beam simulation. The result showed that the multipole compensation can significantly reduces the emittance growth of the pbar beam due to long-range beam-beam interactions.