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Abstract 
 The quad-scan technique is one of the most commonly 

used methods for measuring emittances in photo-injectors 
at medium range energy in which the beam is not 
primarily space charge dominated. The space charge can 
nevertheless contribute strongly to the beam size 
evolution along the drift from the scanning quadrupole to 
the measurement screen. To take the space charge into 
account, we fit the beam sizes while solving the envelope 
equation for each quadrupole value. This algorithm is first 
applied to round beams and then extended to asymmetric 
beams. The benchmarking of this solver with the envelope 
equation tracker with PARMELA simulations is 
presented. The quadrupole scan algorithm including space 
charge correction for the round and not round beams is 
presented. 

1  MOTIVATION 
The beam trace emittance in a single plane is given by 

(<x2><x’2>-<x x’>2)1/2 where the average <> is taken over 
the whole beam distribution of particles with position x 
and angle x’. It corresponds to the square root of the 
determinant of the beam matrix. To measure the 
emittance, one of the techniques commonly used is the 
quadrupole scan.  We consider a beam with beam matrix 
σPo at point Po. 

 
This beam is transported through a quadrupole of 

strength kL and a drift of length l, represented by the 
transport matrix M and striking a screen at P. The beam 
matrix at P is given by σP. The  term σP(1,1) writes  

 M11
2σPo(1,1) + M12 M11 σPo(1,2) + M22 2σPo(2,2)   (2) 

In the quadrupole scan technique, the strength k of the 
quadrupole is varied. With three k values, one can deduce 
the three unknowns and compute the beam emittance. To 
get rid of the systematic errors one usually uses many 
more points. This over-determined system also contains 
information about the two other emittances. 

With this linear analysis, one ignores the strong space 
charge effects. For this reason, at low energy, it is 
standard to use the pepper pot emittance measurement 

technique instead of the quadrupole scan. 
In this paper, we describe a method to take space 

charge into account in any quadrupole scan measurement. 
Also we extend the method to deduce the two transverse 
emittances and the longitudinal emittance. 

2  ENVELOPE EQUATION 
The envelope equation [1] describes the evolution of a 

beam in the presence of space charge forces. With the 
assumption that the space charge force can be linearized 
the envelope equation can be written as three coupled 
equations describing the evolution of an ellipsoidal beam 
as described very thoroughly in [2]. 

 

3  COMPARISON WITH PARMELA  

1D result 
We compared the evolution of beam sizes R and its 

conjuguate variable R’ for a round beam from PARMELA 
with those obtained when transporting the 1D envelope 
equation (first equation of (3) with X = Y = R). We 
assumed a constant peak current and a constant emittance. 
For a bunch with Gaussian profile, one usually uses 2.355 
times the rms bunch length to compute the peak current. It 
appears that using sqrt(12) time the rms bunch length to 
compute the peak current was giving better agreement as 
shown in figure 1. The 3D envelope equation tracker 
includes the variation in bunch length along the drift and 
thus automatically makes the appropriate correction. 

Those differences come from the fact that individual 
slices have in fact a different peak current. When applying 
the same algorithm to the individual slices using  the 
correct slice peak current and initial R and R’, we 
obtained a satisfying agreement as shown in figure 2.   

(1) 

(3) 

(4) 

(5) 

(*) Contact: C.Limborg  
e-mail: limborg@slac.stanford.edu 
SLAC is operated by Stanford University for the
Department of Energy under contract number
DE-AC03-76SF00515 

0-7803-7739-9 ©2003 IEEE 2667

Proceedings of the 2003 Particle Accelerator Conference



 
Figure 1- Evolution of  beam size and divergence for a 5.7 
MeV beam along a drift; the peak current has been 
computed 3 different ways (1) with 2.355 σl (2) with 
sqrt(12) σl and (3) using the total bunch length 

 

 
Figure2 – Evolution of  beam size and divergence for a 
5.7 MeV beam along a drift, for the 6 first slices out of 11; 
Comparison between PARMELA (PARM.) data and 
Envelope Equation (Env. Equ.) solver 

A square pulse was also studied. In this case, the 
number of particles varies strongly inside the slices close 
to the head and tail since the longitudinal space charge 
force is stronger on the steep edges. So particles drift from 
slice to slice and the peak current  varies. Accordingly, the 
agreement with PARMELA is not as good. This type of 
behavior also occurs for bunches with longitudinal 
asymmetric profiles. 

2D result 
We then solved numerically the 2 first equations of (3) 

for non-round beams. Those two equations are coupled 
through the rms horizontal and vertical beam sizes. The 
agreement is satisfying as shown in figure 3. The 
calculation was done here with PARMELA using the 3D 
algorithm. But it does not differ much from the 2D result 
as the beam aspect ratio does not exceed 2 to 1. 
The discrepancies are justified in the next paragraph.   

 
Figure 3- Evolution of beam size and divergence along a 
drift for a non-round beam. The solver agrees well with 

the simulation over 1.5 m. The beam was here at 30 MeV 
but in the space charge dominated regime. 

 3D result 
We solve numerically the 3 equations of (3). The peak 

current is then automatically computed correctly.  Figure 
4 shows that in case of a strong bunch lengthening along 
the drift, the 3D solver gives some very good results. 

 
Figure 4- Evolution of beam transverse size (1), 
divergence (2) and bunch length and its derivative (energy 
spread) (3) along a drift for a 8.5 MeV beam;  

The 3D envelope equation tracker was applied for 
various beam of low energy 5MeV and 8.5 MeV and to 
higher energy beams such as 30 MeV. It gave some very 
satisfying agreement with PARMELA. Beams with 
asymmetric longitudinal profiles cannot correctly be 
represented by the rms quantities. 

4  QUADRUPOLE SCANS 
For typical emittance measurements based on 

quadrupole scans, two quadrupoles Q1 and Q2, are used. 
The scan is done by varying the strength of the second 
quadrupole. The first one is chosen such that the beam on 
the screen has good dimensions and provides a fair 
intensity. One can choose the settings such that both the 
horizontal and vertical beam sizes will go through a waist 
during the scan.  

The three coupled equations of (3) can be transformed 
into six first order differential equations. The transfer 
matrix approach can then be used. It is equivalent to that 
of the envelope equation but easier to manipulate. This 
formalism has been described thoroughly in [2] and it is 
also that developed for Trace 3D [3,4]. 
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The transport matrix used for drifts and quadrupoles are 

standard. But they are fragmented in N pieces. For 
instance, the drift of length L is fragmented into N pieces 
to apply the space charge kicks every N/L. 

 
We checked that the coupling terms in the σ matrix can be 
neglected. We thus only kept the terms σi,i and σi,i+1 for 
i = 1 to 6. They constitute the 9 unknowns we want to 
determine.  

Round beam result 
To reduce the number of unknowns, we first solve for 

the round beam at the entrance of Q1. That reduces the 
number of unknowns to 6. The transformations are  

 

 
As shown in figure 5, the solver without space charge 

matches well the horizontal beam size but does not fit  the 
vertical one correctly. It gives a 71.4 mm.mrad 
horizontally and 69 mm.mrad vertically. The solver which 
includes the space charge fits well both horizontal and 
vertical beam sizes and gives the correct emittance of 60 
mm.mrad. The longitudinal emittance, not represented 
here, given by the solver with space charge is also 
determined accurately to  be 6.4 mm.mrad. 

To solve this problem numerically, an internal 
MATLAB  solver is used[5]. It consists of a constrained 
non-linear least–square fit algorithm based on the 
Levenberg-Marquardt method. This algorithm is also 
described in [6]. 

The robustness of the algorithm needs to be assured. In 
particular, this algorithm should work for noisy data, such 
as experimental data.  

 
 

 
Figure5 – Beam Size (1) horizontal and (2) vertical on 
measurement screen. The beam has a 8.5 MeV and is 
space charge dominated 

Consideration for Elliptic BEAMs  
To fit the beam at Q2 entrance, where it is elliptical, we 

can use the results of the round beam at the entrance of 
Q1 and transport them to Q2. However, a general 
algorithm which solves for the 9 unknowns has also been 
developed as it is useful for flat beam injectors. This 
algorithm fails for the case described in figure 5 when we 
look for a solution at Q2 entrance at which the beam is 
elliptical. The solution found corresponds to a local 
minimum of the least square function and does not lead to 
the solution.  

5  CONCLUSION 
We have demonstrated by comparing PARMELA 

simulations with the tracking of the envelope equation 
that the 3D envelope equation tracking can be applied 
very accurately for low energy beams. Even if the 
envelope equation represents the evolution of rms 
quantities, it also applies to non-Gaussian beams as long 
as they have ellipsoidal symmetry. If the longitudinal 
profile is asymmetric, the envelope equation is not 
appropriate. The space charge correction to a quadrupole 
scan fitting algorithm works fine for a round beam. The 
longitudinal emittance can be successfully deduced.  
Improvement of the solver for the 9 parameters of a non-
round beam requires more sophisticated algorithms than 
the internal Matlab solvers.  
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