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RESISTIVE-WALL WAKE FOR NON-ULTRARELATIVISTIC BEAMS
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Abstract

We compute the longitudinal and transverse wake fields
for velocities smaller than ¢, and examine under which con-
ditions the non-relativistic terms become important.

1 INTRODUCTION

Severas projects are under construction which am to
produce intense proton or ion beams at energies around
1 GeV, for example, the SNS and JPARC. One possible
performance limitations may arise from the resistive-wall
impedance. The conventional treatment of the relativistic
wall wake field considers an ultra-relativistic beam; see,
e.g., Refs. [1, 2]. Only few papers have attempted to treat
the general case. A rare and early exampleis Ref. [3], but
inthe ultrarelativistic limit its wake field does not reduce to
the conventional expression. In this note we derivethe non-
ultrarelativistic longitudinal and transverse Green-function
wake fields, through first order in the skin depth and sec-
ond order in 1/~. We then apply these expressions to four
examples.

2 LONGITUDINAL WAKE

We consider a beam pipe of radius b with skin depth
dskin = /2/ (oo |w|) with conductivity o at angular fre-
quency w, and assume that the charge density A exp(iks —
iwt) travels at the center of the beam pipewithw = vk and
v < c¢. Following Chao's treatment of the ultrarelativis-
tic case [1], we introduce the new variable z = (s — vt).
Then dl quantities have the same dependence exp(ikz) on
s and t. The electric and magnetic fields are related to the
scalar potential ¢ and the magnetic vector potential A via

= —Vo¢ — 8A/8t and B = V x A. Imposing the

Lorentz condition (V A4 (1/c2)0¢)0t + ,u00¢) =0,
the potentials A and ¢ fulfill the equations
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Inside the vacuum chamber o = 0. The only nonzero
field componentsare E;, E, and By because of symmetry.
We can thus set Ay, = 0. One further degree of freedom
alows usto choose A, = 0 aswell.

The Lorentz condition relates the two non-vanishing

componentsas ¢ = (c?k/w)As. The potentials must fulfill
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where k2 = (k% — k2) = k3/(8°4%) > 0 with kg =
w/c. The right-hand side is zero except for inside the
beam. Outside the beam, A, = A.e™* is written as
A, = ply(k.r) 4+ qKo(k,r) , where the coefficient ¢ is
determined by the source current, and p by the surface con-
ditionat r = b. First we compute ¢. The sourceterm j, on
theright hand side of (3) is — g Av. The Green function for
apoint sourceis — Inr/(27); the modified Bessel function
Ky expands as — Inz. Thisyields ¢ = —poAv/(27). If
(r, ¢, z) areright-handed, the fields are

By = —pk.Ii(k;r) + gk, Kq(kor) | (5)
2
E, = iw (1 - %) (plo(krr) + qKo (k1)) . (B)
0
2
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where we have used Iy = I; and K, = —K;. Thewall is
characterized by j = oF and p = 0. For b > 8y, inside
the wall we have
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with the solution £, = FEyexp(—\r), where \2 =
—(ippow — k?) = )\(2) +k2and \g = (1 —isgn(w))/dskin,
or

k?“ . k12“552kin
AN\ (1 + ﬁ) =N <1 + zsgn(w)T> . (9

The second term represents a non-relativistic effect. We
will neglect it, since it is of the order 62, .

The relationship between B, and E, follows from V x
E = —0B/otand V - E = 0 asiwB, = E,(1 —
isgn(w))/dskin - INSerting the expressions for By and E
evaluated at » = b and solving for p we get
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where all Bessel functionshavetheargumentz = k..b. The
magnetic vector potential A, = A,e*** becomes

HoAV

A, = — [Ko(k,r)

. (1 —isgn(w))Ko(x) + 5Skink8K1 (z) .
(1 —isgn(w))Io(z) — dskink 1 () Io (k1)
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Computing from thisthe longitudinal electricfield £, =
E.e™* as B, = —iwk?/k3A,, and expanding in k, and
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Oskin, We obtain
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where 5£kl)n refers to the skin depth at angular frequency

ck, and we have assumed |k| > k,.. Inthe ultrarelativistic
limit k£, — 0, the term depending on 5skm agrees with the
result (2.77) in Ref. [1]. If k. # 0 the electric field cor-
responding to the resistive-wall wake depends not only on
the longitudinal distance = from the source, but also on the
radial position r. The term independent of 4y, describes
the effect of space charge.

The longitudinal impedance per unit length is re-
lated to E,(k) as Z)(k) = —E(k)/js where k =

k2 4+ w?/c2. From the impedance we compute the lon-
gitudinal Green function wake per unit length as W/ (z) =
—v/(2rjs) [*5_ Es(k)e™™*dk, where, as before, j, = M.
If W§(z) > 0 the wake field decelerates. Keeping only the
res.-wall terms, which depend on i, from (12) we get
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In the ultra-relativistic limit this reduces to the familiar

o T 1 1
— —1)—=. 14
17\ e 3B~ Vi - ()

3 TRANSVERSE WAKE

For atransverse wake, every quantity, V', has the depen-
dence V = V exp(ime +iks —iwt) = V exp(imep + ikz)
ons, ¢ andt. Inaddition, al field componentsare nonzero,
and we can no longer assume that A, and A4 are zero. In
cylindrical coordinates we find

Wy (2) =~

Wy (2)
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The transverse components are decoupled by introducing
Ay = A+ Z'A¢, A_ = A, — Z'A¢, and j+ = j, E Jg»
which yields

10 8Ai (1+m)?
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The original radial and azimuthal vector components are
Ar=(Ay +A_)/2and Ay = (A4 — A_)/(20).

We only consider the dipolewake, m = +1. Outside the
beam, the solution for each component is again a superpo-
sition of two Bessdl functions, i.e., for m = 1,

AV = k) + ¢V Kalker)  (16)
AY = pg)fo(krr)-i-q(,l)Ko(kﬂ“) (17)
AW PV (ko) + ¢V K (ko) (18)

¢ = py Lkr)+q Ki(ker) . (19)

and similarly for m = —1, for which I (K) is exchanged
with Is (K3). The coefficients of the Bessel functions for
m = —1 arecalled p{_ ", ¢1), etc., and, by symmetry,
they are equal to the corresponding coefficientsfor m = 1,
D = piY and p " = p). Considering now a

€d., Py
perturbation of the form cos ¢ = (e*? +¢~%¢) /2, we obtain

Ay (p+I> + g4+ Ko + p_Io + q_Ko) cos e’
Ay = (prlh+qi Ko —p_ Iy — q_Kp)sin pe'™
As = (pshi + qsK1) cos ge'*

¢ = (poli + qoK1)cos e’

where the argument of the Bessel functions is (k,r), and
we have dropped the superindex ‘ (1) of all coefficients.
The Lorentz condition yields the two equations

k. k.
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To determine these coefficients, we again consider the
sourceterms. Asbefore, j, = j, = 0 and j; = vp. But the
current source j, is now displaced by a small transverse
distance d from the center of the pipe, so as to generate
a dipole moment. The free-space Green function for the
dipole current component is (—uoAdv/r)/(27), and the
dipole charge sourceis (—\d/r)/(2meg). Inthe transverse
direction j; = j_ = j, = j, = 0.

By equating the source terms and their corresponding
Green functions with the expansions of K1, Kq or Ko
in the expressions for the vector potentials we find that
as = —porv/(2m) (ked), g0 = ¢*k/(w)gs, q+ = 0,
g— = 0. Againweinvokethe wall boundariesto determine
the remaining coefficients. If |\o| > 1/b and |Ao| > F,
we find the same condition asfor m = 0: iwBy = E(1 —
isgn(w))/dskin = MoEs . From Faraday-Maxwell’'s law
we obtain a second boundary condition: —iwB s ~ Ao Ey .
The longitudinal and azimuthal field components are re-
lated to the potentials, A, = A, cos ¢ei**, etc., via

By = (ik;lr — ﬁfiz) cos pe't* (22

0

0A,

B, <1fir + =2 4 A—) sin ge™™*  (23)
or

r
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Ey = <%¢ + z’w[l(b) sin ge'*? (24)
E, — (—z’ké n z‘wixs) cos pei*® | (25)

so that the boundary conditionsat » = b become
—wkA, —iw A, )Or = No(—ikd +iwA,)  (26)

No(¢/r+iwAg) = —iw(A, /r+0As/0r+Ag/r) . (27)

The remaining gauge freedom allows for the choice py =
(c?k/w)ps. Using this gauge, we can solve the two equa-
tions (26) and (27) together with the Lorentz conditions
(20) and (21), so as to obtain an expression relating p s and
gs. Inserting this into the formulafor £, = E, cos pettz
and expanding to first order in 43, and up to second order
in k.., dropping powers of order higher than 2 in r, wefind

~ k2 pov
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The transverse wake is now obtained using the Panofsky-
Wenzel theoreme(E, +(vx B),) = [(0F,/dr)dz, which,
thanks to w = vk, isvalid as in the relativistic case, and
dsoimplies 7, (k) = Z)(k)/k. Thisgives

- potdechv 1 [ (o)
F N — : 1
+ 2 b3 {651‘”‘

1k2 b2k2
1%z 4

(sgn(e) — i) — isgn(w)b1s (1+ 5)} (29

The transverse impedance per unit length is Z (k) =
—iF| /(edvd). In the ultrardativistic limit, &, — 0,
this agrees with the classical result of [1]. The trans
verse Green function wake per unit length is W, (z) =
—1/(2meAd) [*_ Fy(k)e**dk. If Wi(z) < 0, the wake
is defocusing. Dropping the space-charge term, from (29)
the res.-wall wake function becomes

VTH0c? 302 4 4(44% — 5)22
Am2h301/27 (2 —1)|2]%/2

(sgn(z) — 1)

In the ultra-relativistic limit this reducesto

- ‘/71'/.10(33/2 1

W1 (Z )
(30)

(31)

4 APPLICATIONS

Typical parameters of several low-energy proton or ion
accelerators are listed in Table 1. For each case we con-
sider a stainless chamber with ¢ = 1.4 x 106 Q—! m~1.
The longitudinal wake function at the chamber wall are
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shown in Fig. 1, the transverse in Fig. 2. The differences
between the ultra-relativistic limit, (14) and (31), and the
more accurate formulae, (13) and (30), are significant for
z > —b/4/1092 — T or v < 3. The energy decreases from
SN, over JPARC and PS booster to an ECR source. The
latter also illustrates the effect of asmaller pipe radius b.

Table 1: Example Parameters

SNS JPARC  PS booster ECR

v 2.1 14 1.05 1.003
o, 25m 12m 26m 100 m
o 2cm 2cm 3mm 4 mm
b 8cm 12.5¢cm 30cm 3cm
QN, 1.5x10™ 4x10 12x102 2x10'

<10%
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E0F — y—ParRC

57:1 OE; -------- PS Booster

~0.025 0

z [m]
Figure 1: Longitudinal wake |W}|2°5/2n2b\/ac/ (o) a
r = b vs. distance z in m, according to (13) [colored] and
in the ultracrelativistic limit (14) [black solid].

1
-0.05

1
-0.075

~107%

E'OF — y-Parc

@Oi """" PS Booster

ot

>~ f — ultra—rel.

Doy e L

Y B

G

E10 =

N | | ‘

= -0.1 -0.075 —oos o |
- z[ml]

Figure 2: Transverser. w. wake |W1|23/272b%/oc/ (c? o)
vs. distance z in m, according to (30) [colored] and in the
ultra-relativistic limit (31) [black solid].
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