RESISTIVE-WALL WAKE FOR NON-ULTRARELATIVISTIC BEAMS

Frank Zimmermann, CERN, Geneva, Switzerland; Katsunobu Oide, KEK, Tsukuba, Japan

Abstract

We compute the longitudinal and transverse wake fields for velocities smaller than c, and examine under which conditions the non-relativistic terms become important.

1 INTRODUCTION

Severals projects are under construction which aim to produce intense proton or ion beams at energies around 1 GeV , for example, the SNS and J-PARC. One possible performance limitations may arise from the resistive-wall impedance. The conventional treatment of the relativistic wall wake field considers an ultra-relativistic beam; see, e.g., Refs. [1, 2]. Only few papers have attempted to treat the general case. A rare and early example is Ref. [3], but in the ultrarelativistic limit its wake field does not reduce to the conventional expression. In this note we derive the nonultrarelativistic longitudinal and transverse Green-function wake fields, through first order in the skin depth and second order in $1 / \gamma$. We then apply these expressions to four examples.

2 LONGITUDINAL WAKE

We consider a beam pipe of radius b with skin depth $\delta_{\text {skin }}=\sqrt{2 /\left(\mu_{0} \sigma|\omega|\right)}$ with conductivity σ at angular frequency ω, and assume that the charge density $\lambda \exp (i k s-$ $i \omega t)$ travels at the center of the beam pipe with $\omega=v k$ and $v<c$. Following Chao's treatment of the ultrarelativistic case [1], we introduce the new variable $z=(s-v t)$. Then all quantities have the same dependence $\exp (i k z)$ on s and t. The electric and magnetic fields are related to the scalar potential ϕ and the magnetic vector potential \vec{A} via $\vec{E}=-\nabla \phi-\partial \vec{A} / \partial t$ and $\vec{B}=\nabla \times \vec{A}$. Imposing the Lorentz condition $\left(\vec{\nabla} \cdot \vec{A}+\left(1 / c^{2}\right) \partial \phi / \partial t+\mu_{0} \sigma \phi\right)=0$, the potentials \vec{A} and ϕ fulfill the equations

$$
\begin{gather*}
-\triangle \vec{A}+\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}+\mu_{0} \sigma \frac{\partial \vec{A}}{\partial t}=\mu_{0}(\vec{j}-\sigma \vec{E}) \tag{1}\\
-\triangle \phi+\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+\mu_{0} \sigma \frac{\partial \phi}{\partial t}=\frac{\rho}{\epsilon_{0}} \tag{2}
\end{gather*}
$$

Inside the vacuum chamber $\sigma=0$. The only nonzero field components are E_{s}, E_{r} and B_{ϕ} because of symmetry. We can thus set $A_{\phi}=0$. One further degree of freedom allows us to choose $A_{r}=0$ as well.

The Lorentz condition relates the two non-vanishing components as $\phi=\left(c^{2} k / \omega\right) A_{s}$. The potentials must fulfill

$$
\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A_{s}}{\partial r}\right)-k_{r}^{2} A_{s} & =-\mu_{0} j_{s} \tag{3}\\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)-k_{r}^{2} \phi & =-\frac{\rho_{0}}{\epsilon_{0}} \tag{4}
\end{align*}
$$

where $k_{r}^{2}=\left(k^{2}-k_{0}^{2}\right)=k_{0}^{2} /\left(\beta^{2} \gamma^{2}\right)>0$ with $k_{0}=$ ω / c. The right-hand side is zero except for inside the beam. Outside the beam, $A_{s}=\tilde{A}_{s} e^{i k z}$ is written as $\tilde{A}_{s}=p I_{0}\left(k_{r} r\right)+q K_{0}\left(k_{r} r\right)$, where the coefficient q is determined by the source current, and p by the surface condition at $r=b$. First we compute q. The source term j_{s} on the right hand side of (3) is $-\mu_{0} \lambda v$. The Green function for a point source is $-\ln r /(2 \pi)$; the modified Bessel function K_{0} expands as $-\ln z$. This yields $q=-\mu_{0} \lambda v /(2 \pi)$. If (r, ϕ, z) are right-handed, the fields are

$$
\begin{align*}
B_{\phi} & =-p k_{r} I_{1}\left(k_{r} r\right)+q k_{r} K_{1}\left(k_{r} r\right) \tag{5}\\
E_{s} & =i \omega\left(1-\frac{k^{2}}{k_{0}^{2}}\right)\left(p I_{0}\left(k_{r} r\right)+q K_{0}\left(k_{r} r\right)\right) \tag{6}\\
E_{r} & =-\frac{c^{2} k k_{r}}{\omega}\left(p I_{1}\left(k_{r} r\right)-q K_{1}\left(k_{r} r\right)\right) \tag{7}
\end{align*}
$$

where we have used $I_{0}^{\prime}=I_{1}$ and $K_{0}^{\prime}=-K_{1}$. The wall is characterized by $\vec{j}=\sigma \vec{E}$ and $\rho=0$. For $b \gg \delta_{\text {skin }}$, inside the wall we have

$$
\begin{equation*}
-\frac{\partial^{2} E_{s}}{\partial r^{2}} \approx-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial E_{s}}{\partial r}\right)=\left(i \mu_{0} \sigma \omega-k_{r}^{2}\right) E_{s} \tag{8}
\end{equation*}
$$

with the solution $E_{s}=E_{s 0} \exp (-\lambda r)$, where $\lambda^{2}=$ $-\left(i \mu_{0} \sigma \omega-k_{r}^{2}\right)=\lambda_{0}^{2}+k_{r}^{2}$ and $\lambda_{0} \equiv(1-i \operatorname{sgn}(\omega)) / \delta_{\text {skin }}$, or

$$
\begin{equation*}
\lambda \approx \lambda_{0}\left(1+\frac{k_{r}^{2}}{2 \lambda_{0}^{2}}\right)=\lambda_{0}\left(1+i \operatorname{sgn}(\omega) \frac{k_{r}^{2} \delta_{\text {skin }}^{2}}{4}\right) . \tag{9}
\end{equation*}
$$

The second term represents a non-relativistic effect. We will neglect it, since it is of the order $\delta_{\text {skin }}^{2}$.

The relationship between B_{ϕ} and E_{s} follows from $\vec{\nabla} \times$ $\vec{E}=-\partial \vec{B} / \partial t$ and $\vec{\nabla} \cdot \vec{E}=0$ as $i \omega \tilde{B}_{\phi}=\tilde{E}_{s}(1-$ $i \operatorname{sgn}(\omega)) / \delta_{\text {skin }}$. Inserting the expressions for B_{ϕ} and E_{s} evaluated at $r=b$ and solving for p we get

$$
\begin{equation*}
p=-\frac{(1-i \operatorname{sgn}(\omega)) k_{r} K_{0}+\delta_{\text {skin }} k_{0}^{2} K_{1}}{(1-i \operatorname{sgn}(\omega)) k_{r} I_{0}-\delta_{\text {skin }} k_{0}^{2} I_{1}} q \tag{10}
\end{equation*}
$$

where all Bessel functions have the $\underset{\tilde{A}}{\operatorname{argument}} x \equiv k_{r} b$. The magnetic vector potential $A_{s}=\tilde{A}_{s} e^{i k z}$ becomes

$$
\begin{gather*}
\tilde{A}_{s}=-\frac{\mu_{0} \lambda v}{2 \pi}\left[K_{0}\left(k_{r} r\right)\right. \\
\left.-\frac{(1-i \operatorname{sgn}(\omega)) K_{0}(x)+\delta_{\text {skin }} k_{0}^{2} K_{1}(x)}{(1-i \operatorname{sgn}(\omega)) I_{0}(x)-\delta_{\text {skin }} k_{0}^{2} I_{1}(x)} I_{0}\left(k_{r} r\right)\right] . \tag{11}
\end{gather*}
$$

Computing from this the longitudinal electric field $E_{s}=$ $\tilde{E}_{s} e^{i k z}$ as $\tilde{E}_{s}=-i \omega k_{r}^{2} / k_{0}^{2} \tilde{A}_{s}$, and expanding in k_{r} and
$\delta_{\text {skin }}$, we obtain

$$
\begin{align*}
\tilde{E}_{s}(k) \approx & \frac{\mu_{0} \lambda v c k}{2 \pi}\left[\frac { (\operatorname { s g n } (k) - i) \delta _ { \text { skin } } ^ { (0) } } { 2 b } \left(1-\frac{1}{4} \frac{k_{r}^{2}}{k^{2}}\right.\right. \\
& \left.\left.-\frac{k_{r}^{2}\left(2 b^{2}-r^{2}\right)}{4}\right)-i \frac{k_{r}^{2}}{k^{2}} \ln \frac{r}{b}\right] \tag{12}
\end{align*}
$$

where $\delta_{\text {skin }}^{(0)}$ refers to the skin depth at angular frequency $c k$, and we have assumed $|k|>k_{r}$. In the ultrarelativistic limit $k_{r} \rightarrow 0$, the term depending on $\delta_{\text {skin }}^{(0)}$ agrees with the result (2.77) in Ref. [1]. If $k_{r} \neq 0$ the electric field corresponding to the resistive-wall wake depends not only on the longitudinal distance z from the source, but also on the radial position r. The term independent of $\delta_{\text {skin }}$ describes the effect of space charge.

The longitudinal impedance per unit length is related to $\tilde{E}_{s}(k)$ as $Z_{\|}(k)=-\tilde{E}_{s}(k) / j_{s}$ where $k=$ $\sqrt{k_{r}^{2}+\omega^{2} / c^{2}}$. From the impedance we compute the longitudinal Green function wake per unit length as $W_{0}^{\prime}(z)=$ $-v /\left(2 \pi j_{s}\right) \int_{-\infty}^{\infty} \tilde{E}_{s}(k) e^{i k z} d k$, where, as before, $j_{s}=\lambda v$. If $W_{0}^{\prime}(z)>0$ the wake field decelerates. Keeping only the res.-wall terms, which depend on $\delta_{\text {skin }}$, from (12) we get

$$
\begin{align*}
& W_{0}^{\prime}(z) \approx-\frac{c^{2} \mu_{0}}{4 \pi^{2}} \sqrt{\frac{\pi}{\mu_{0} \sigma c}} \frac{1}{2 b} \beta(\operatorname{sgn}(z)-1) \\
& \quad\left(-\frac{\gamma^{2}-5 / 4}{\left(\gamma^{2}-1\right)|z|^{3 / 2}}-\frac{15}{16} \frac{b^{2}}{\left(\gamma^{2}-1\right)|z|^{7 / 2}}\right) . \tag{13}
\end{align*}
$$

In the ultra-relativistic limit this reduces to the familiar

$$
\begin{equation*}
W_{0}^{\prime}(z) \approx \frac{c^{2} \mu_{0}}{4 \pi^{2}} \sqrt{\frac{\pi}{\mu_{0} \sigma c}} \frac{1}{2 b}(\operatorname{sgn}(z)-1) \frac{1}{|z|^{3 / 2}} \tag{14}
\end{equation*}
$$

3 TRANSVERSE WAKE

For a transverse wake, every quantity, V, has the dependence $V=\tilde{V} \exp (i m \phi+i k s-i \omega t)=\tilde{V} \exp (i m \phi+i k z)$ on s, ϕ and t. In addition, all field components are nonzero, and we can no longer assume that A_{r} and A_{ϕ} are zero. In cylindrical coordinates we find

$$
\begin{aligned}
-\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial A_{r}}{\partial r}\right]+ & \frac{2 i m}{r^{2}} A_{\phi}+\left[\frac{1+m^{2}}{r^{2}}+k_{r}^{2}\right] A_{r}
\end{aligned}=\mu_{0} j_{r} .
$$

The transverse components are decoupled by introducing $A_{+} \equiv A_{r}+i A_{\phi}, A_{-} \equiv A_{r}-i A_{\phi}$, and $j_{ \pm} \equiv j_{r} \pm j_{\phi}$, which yields

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A_{ \pm}}{\partial r}\right)-\left(\frac{(1 \pm m)^{2}}{r^{2}}+k_{r}^{2}\right) A_{ \pm}=-\mu_{0} j_{ \pm} \tag{15}
\end{equation*}
$$

The original radial and azimuthal vector components are $A_{r}=\left(A_{+}+A_{-}\right) / 2$ and $A_{\phi}=\left(A_{+}-A_{-}\right) /(2 i)$.

We only consider the dipole wake, $m= \pm 1$. Outside the beam, the solution for each component is again a superposition of two Bessel functions, i.e., for $m=1$,

$$
\begin{align*}
\tilde{A}_{+}^{(1)} & =p_{+}^{(1)} I_{2}\left(k_{r} r\right)+q_{+}^{(1)} K_{2}\left(k_{r} r\right) \tag{16}\\
\tilde{A}_{-}^{(1)} & =p_{-}^{(1)} I_{0}\left(k_{r} r\right)+q_{-}^{(1)} K_{0}\left(k_{r} r\right) \tag{17}\\
\tilde{A}_{s}^{(1)} & =p_{s}^{(1)} I_{1}\left(k_{r} r\right)+q_{s}^{(1)} K_{1}\left(k_{r} r\right) \tag{18}\\
\phi & =p_{0}^{(1)} I_{1}\left(k_{r} r\right)+q_{0}^{(1)} K_{1}\left(k_{r} r\right) . \tag{19}
\end{align*}
$$

and similarly for $m=-1$, for which $I_{0}\left(K_{0}\right)$ is exchanged with $I_{2}\left(K_{2}\right)$. The coefficients of the Bessel functions for $m=-1$ are called $p_{+}^{(-1)}, q^{(-1)}$, etc., and, by symmetry, they are equal to the corresponding coefficients for $m=1$, e.g., $p_{0}^{(-1)}=p_{0}^{(1)}$ and $p_{+}^{(-1)}=p_{-}^{(1)}$. Considering now a perturbation of the form $\cos \phi=\left(e^{i \phi}+e^{-i \phi}\right) / 2$, we obtain

$$
\begin{aligned}
A_{r} & =\left(p_{+} I_{2}+q_{+} K_{2}+p_{-} I_{0}+q_{-} K_{0}\right) \cos \phi e^{i k z} \\
A_{\phi} & =\left(p_{+} I_{2}+q_{+} K_{2}-p_{-} I_{0}-q_{-} K_{0}\right) \sin \phi e^{i k z} \\
A_{s} & =\left(p_{s} I_{1}+q_{s} K_{1}\right) \cos \phi e^{i k z} \\
\phi & =\left(p_{0} I_{1}+q_{0} K_{1}\right) \cos \phi e^{i k z}
\end{aligned}
$$

where the argument of the Bessel functions is $\left(k_{r} r\right)$, and we have dropped the superindex '(1)' of all coefficients.

The Lorentz condition yields the two equations

$$
\begin{align*}
\frac{k_{r}}{2} p_{+}^{(1)}+\frac{k_{r}}{2} p_{-}^{(1)}+i k p_{s}^{(1)}-i \frac{\omega}{c^{2}} p_{0}^{(1)} & =0 \tag{20}\\
-\frac{k_{r}}{2} q_{+}^{(1)}-\frac{k_{r}}{2} q_{-}^{(1)}+i k q_{s}^{(1)}-i \frac{\omega}{c^{2}} q_{0}^{(1)} & =0 \tag{21}
\end{align*}
$$

To determine these coefficients, we again consider the source terms. As before, $j_{\phi}=j_{r}=0$ and $j_{s}=v \rho$. But the current source j_{s} is now displaced by a small transverse distance d from the center of the pipe, so as to generate a dipole moment. The free-space Green function for the dipole current component is $\left(-\mu_{0} \lambda d v / r\right) /(2 \pi)$, and the dipole charge source is $(-\lambda d / r) /\left(2 \pi \epsilon_{0}\right)$. In the transverse direction $j_{+}=j_{-}=j_{r}=j_{\phi}=0$.

By equating the source terms and their corresponding Green functions with the expansions of K_{1}, K_{0} or K_{2} in the expressions for the vector potentials we find that $q_{s}=-\mu_{0} \lambda v /(2 \pi)\left(k_{r} d\right), q_{0}=c^{2} k /(\omega) q_{s}, q_{+}=0$, $q_{-}=0$. Again we invoke the wall boundaries to determine the remaining coefficients. If $\left|\lambda_{0}\right| \gg 1 / b$ and $\left|\lambda_{0}\right| \gg k$, we find the same condition as for $m=0: i \omega B_{\phi}=E_{s}(1-$ $i \operatorname{sgn}(\omega)) / \delta_{\text {skin }}=\lambda_{0} E_{s}$. From Faraday-Maxwell's law we obtain a second boundary condition: $-i \omega B_{s} \approx \lambda_{0} E_{\phi}$. The longitudinal and azimuthal field components are related to the potentials, $A_{r}=\tilde{A}_{r} \cos \phi e^{i k z}$, etc., via

$$
\begin{align*}
B_{\phi} & =\left(i k \tilde{A}_{r}-\frac{\partial}{\partial r} \tilde{A}_{z}\right) \cos \phi e^{i k z} \tag{22}\\
B_{s} & =\left(\frac{1}{r} \tilde{A}_{r}+\frac{\partial \tilde{A}_{\phi}}{\partial r}+\frac{\tilde{A}_{\phi}}{r}\right) \sin \phi e^{i k z} \tag{23}
\end{align*}
$$

$$
\begin{align*}
E_{\phi} & =\left(\frac{1}{r} \tilde{\phi}+i \omega \tilde{A}_{\phi}\right) \sin \phi e^{i k z} \tag{24}\\
E_{s} & =\left(-i k \tilde{\phi}+i \omega \tilde{A}_{s}\right) \cos \phi e^{i k z} \tag{25}
\end{align*}
$$

so that the boundary conditions at $r=b$ become

$$
\begin{gather*}
-\omega k \tilde{A}_{r}-i \omega \partial \tilde{A}_{s} / \partial r=\lambda_{0}\left(-i k \tilde{\phi}+i \omega \tilde{A}_{s}\right) \tag{26}\\
\lambda_{0}\left(\tilde{\phi} / r+i \omega \tilde{A}_{\phi}\right)=-i \omega\left(\tilde{A}_{r} / r+\partial \tilde{A}_{\phi} / \partial r+\tilde{A}_{\phi} / r\right) \tag{27}
\end{gather*}
$$

The remaining gauge freedom allows for the choice $p_{0}=$ $\left(c^{2} k / \omega\right) p_{s}$. Using this gauge, we can solve the two equations (26) and (27) together with the Lorentz conditions (20) and (21), so as to obtain an expression relating p_{s} and q_{s}. Inserting this into the formula for $E_{s}=\tilde{E}_{s} \cos \phi e^{i k z}$ and expanding to first order in $\delta_{\text {skin }}$ and up to second order in k_{r}, dropping powers of order higher than 2 in r, we find

$$
\begin{align*}
\tilde{E}_{s}(k)= & -i \omega \frac{k_{r}^{2}}{k_{0}^{2}} \frac{\mu_{0} \lambda v}{2 \pi} d k_{r}\left[K_{1}\left(k_{r} r\right)+\frac{p_{s}}{q_{s}} I_{1}\left(k_{r} r\right)\right] \\
\approx \quad & -c k d \frac{\mu_{0} \lambda v}{2 \pi} \frac{1}{b^{3} r}\left[\delta_{\text {skin }}^{(0)}\left(r^{2}-\frac{1}{4} \frac{k_{r}^{2}}{k^{2}} r^{2}-\frac{b^{2} k_{r}^{2}}{4} r^{2}\right)\right. \\
& \left.(\operatorname{sgn}(\omega)-i)+i \operatorname{sgn}(k) b \frac{k_{r}^{2}}{k^{2}}\left(b^{2}-r^{2}\right)\right] \tag{28}
\end{align*}
$$

The transverse wake is now obtained using the PanofskyWenzel theorem $e\left(E_{r}+(\vec{v} \times \vec{B})_{r}\right)=\int\left(\partial F_{s} / \partial r\right) d z$, which, thanks to $\omega=v k$, is valid as in the relativistic case, and also implies $Z_{\perp}(k)=Z_{\|}(k) / k$. This gives

$$
\begin{align*}
\tilde{F}_{\perp} \approx & \frac{\mu_{0} i d e c \lambda v}{2 \pi} \frac{1}{b^{3}}\left[\delta_{\text {skin }}^{(0)}\left(1-\frac{1}{4} \frac{k_{r}^{2}}{k^{2}}-\frac{b^{2} k_{r}^{2}}{4}\right)\right. \\
& \left.(\operatorname{sgn}(\omega)-i)-i \operatorname{sgn}(\omega) b \frac{k_{r}^{2}}{k^{2}}\left(1+\frac{b^{2}}{r^{2}}\right)\right] \tag{29}
\end{align*}
$$

The transverse impedance per unit length is $Z_{\perp}(k)=$ $-i \tilde{F}_{\perp} /(e \lambda v d)$. In the ultrarelativistic limit, $k_{r} \rightarrow 0$, this agrees with the classical result of [1]. The transverse Green function wake per unit length is $W_{1}(z)=$ $-1 /(2 \pi e \lambda d) \int_{-\infty}^{\infty} \tilde{F}_{\perp}(k) e^{i k z} d k$. If $W_{1}(z)<0$, the wake is defocusing. Dropping the space-charge term, from (29) the res.-wall wake function becomes

$$
\begin{align*}
W_{1}(z) \approx & \frac{\sqrt{\pi \mu_{0}} c^{3 / 2}}{4 \pi^{2} b^{3} \sigma^{1 / 2}} \beta \frac{3 b^{2}+4\left(4 \gamma^{2}-5\right) z^{2}}{8\left(\gamma^{2}-1\right)|z|^{5 / 2}} \\
& (\operatorname{sgn}(z)-1) \tag{30}
\end{align*}
$$

In the ultra-relativistic limit this reduces to

$$
\begin{equation*}
W_{1}(z) \approx \frac{\sqrt{\pi \mu_{0}} c^{3 / 2}}{2 \pi^{2} b^{3} \sigma^{1 / 2}} \frac{1}{|z|^{1 / 2}}(\operatorname{sgn}(z)-1) \tag{31}
\end{equation*}
$$

4 APPLICATIONS

Typical parameters of several low-energy proton or ion accelerators are listed in Table 1. For each case we consider a stainless chamber with $\sigma=1.4 \times 10^{6} \Omega^{-1} \mathrm{~m}^{-1}$. The longitudinal wake function at the chamber wall are
shown in Fig. 1, the transverse in Fig. 2. The differences between the ultra-relativistic limit, (14) and (31), and the more accurate formulae, (13) and (30), are significant for $z>-b / \sqrt{10 \gamma^{2}-7}$ or $\gamma<3$. The energy decreases from SNS, over J-PARC and PS booster to an ECR source. The latter also illustrates the effect of a smaller pipe radius b.

Table 1: Example Parameters

	SNS	J-PARC	PS booster	ECR
γ	2.1	1.4	1.05	1.003
σ_{z}	25 m	12 m	26 m	100 m
σ_{r}	2 cm	2 cm	3 mm	4 mm
b	8 cm	12.5 cm	30 cm	3 cm
$Q N_{b}$	1.5×10^{14}	4×10^{13}	1.2×10^{12}	2×10^{13}

Figure 1: Longitudinal wake $\left|W_{0}^{\prime}\right| 2^{5 / 2} \pi^{2} b \sqrt{\sigma c} /\left(c^{2} \mu_{0}\right)$ at $r=b$ vs. distance z in m, according to (13) [colored] and in the ultra-relativistic limit (14) [black solid].

Figure 2: Transverse r. w. wake $\left|W_{1}\right| 2^{3 / 2} \pi^{2} b^{3} \sqrt{\sigma c} /\left(c^{2} \mu_{0}\right)$ vs. distance z in m , according to (30) [colored] and in the ultra-relativistic limit (31) [black solid].

5 REFERENCES

[1] A. Chao, "Physics of Collective Beam Instabilities in High Energy Accelerators," J. Wiley (1993).
[2] B. Zotter, S. Heifets, "Impedances and Wakes in High-Energy Particle Accelerators," World Scientific (1998).
[3] P. Morton, V.K. Neil, A. Sessler, J. Appl. Phys. 37, 3875 (1966).

