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Abstract

We compute the longitudinal and transverse wake fields
for velocities smaller than c, and examine under which con-
ditions the non-relativistic terms become important.

1 INTRODUCTION
Severals projects are under construction which aim to

produce intense proton or ion beams at energies around
1 GeV, for example, the SNS and J-PARC. One possible
performance limitations may arise from the resistive-wall
impedance. The conventional treatment of the relativistic
wall wake field considers an ultra-relativistic beam; see,
e.g., Refs. [1, 2]. Only few papers have attempted to treat
the general case. A rare and early example is Ref. [3], but
in the ultrarelativistic limit its wake field does not reduce to
the conventional expression. In this note we derive the non-
ultrarelativistic longitudinal and transverse Green-function
wake fields, through first order in the skin depth and sec-
ond order in 1/γ. We then apply these expressions to four
examples.

2 LONGITUDINAL WAKE
We consider a beam pipe of radius b with skin depth

δskin =
√

2/(µ0σ|ω|) with conductivity σ at angular fre-
quency ω, and assume that the charge density λ exp(iks −
iωt) travels at the center of the beam pipe with ω = vk and
v < c. Following Chao’s treatment of the ultrarelativis-
tic case [1], we introduce the new variable z = (s − vt).
Then all quantities have the same dependence exp(ikz) on
s and t. The electric and magnetic fields are related to the
scalar potential φ and the magnetic vector potential �A via
�E = −∇φ − ∂ �A/∂t and �B = ∇ × �A. Imposing the

Lorentz condition
(

�∇ · �A + (1/c2)∂φ/∂t + µ0σφ
)

= 0 ,

the potentials �A and φ fulfill the equations

−� �A +
1
c2

∂2 �A

∂t2
+ µ0σ

∂ �A

∂t
= µ0(�j − σ �E) . (1)

−�φ +
1
c2

∂2φ

∂t2
+ µ0σ

∂φ

∂t
=

ρ

ε0
. (2)

Inside the vacuum chamber σ = 0. The only nonzero
field components are Es, Er and Bφ because of symmetry.
We can thus set Aφ = 0. One further degree of freedom
allows us to choose Ar = 0 as well.

The Lorentz condition relates the two non-vanishing
components as φ = (c2k/ω)As. The potentials must fulfill

1
r

∂

∂r

(
r
∂As

∂r

)
− k2

rAs = −µ0js , (3)

1
r

∂

∂r

(
r
∂φ

∂r

)
− k2

rφ = −ρ0

ε0
, (4)

where k2
r = (k2 − k2

0) = k2
0/(β2γ2) > 0 with k0 =

ω/c. The right-hand side is zero except for inside the
beam. Outside the beam, As = Ãse

ikz is written as
Ãs = pI0(krr) + qK0(krr) , where the coefficient q is
determined by the source current, and p by the surface con-
dition at r = b. First we compute q. The source term js on
the right hand side of (3) is −µ0λv. The Green function for
a point source is − ln r/(2π); the modified Bessel function
K0 expands as − ln z. This yields q = −µ0λv/(2π). If
(r, φ, z) are right-handed, the fields are

Bφ = −pkrI1(krr) + qkrK1(krr) , (5)

Es = iω

(
1 − k2

k2
0

)
(pI0(krr) + qK0(krr)) . (6)

Er = −c2kkr

ω
(pI1(krr) − qK1(krr)) , (7)

where we have used I ′
0 = I1 and K ′

0 = −K1. The wall is
characterized by �j = σ �E and ρ = 0. For b � δskin, inside
the wall we have

−∂2Es

∂r2
≈ −1

r

∂

∂r

(
r
∂Es

∂r

)
= (iµ0σω − k2

r)Es , (8)

with the solution Es = Es0 exp(−λr), where λ2 =
−(iµ0σω − k2

r ) = λ2
0 + k2

r and λ0 ≡ (1− isgn(ω))/δskin,
or

λ ≈ λ0

(
1 +

k2
r

2λ2
0

)
= λ0

(
1 + isgn(ω)

k2
rδ2

skin

4

)
. (9)

The second term represents a non-relativistic effect. We
will neglect it, since it is of the order δ2

skin.

The relationship between Bφ and Es follows from �∇ ×
�E = −∂ �B/∂t and �∇ · �E = 0 as iωB̃φ = Ẽs(1 −
isgn(ω))/δskin . Inserting the expressions for Bφ and Es

evaluated at r = b and solving for p we get

p = − (1 − isgn(ω))krK0 + δskink2
0K1

(1 − isgn(ω))krI0 − δskink2
0I1

q , (10)

where all Bessel functions have the argument x ≡ krb. The
magnetic vector potential As = Ãse

ikz becomes

Ãs = −µ0λv

2π
[K0(krr)

− (1 − isgn(ω))K0(x) + δskink2
0K1(x)

(1 − isgn(ω))I0(x) − δskink2
0I1(x)

I0(krr)
]

. (11)

Computing from this the longitudinal electric field Es =
Ẽse

ikz as Ẽs = −iωk2
r/k2

0Ãs, and expanding in kr and
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δskin, we obtain

Ẽs(k) ≈ µ0λvck

2π

[
(sgn(k) − i)δ(0)

skin

2b

(
1 − 1

4
k2

r

k2

−k2
r(2b2 − r2)

4

)
− i

k2
r

k2
ln

r

b

]
, (12)

where δ
(0)
skin refers to the skin depth at angular frequency

ck, and we have assumed |k| > kr. In the ultrarelativistic

limit kr → 0, the term depending on δ
(0)
skin agrees with the

result (2.77) in Ref. [1]. If kr �= 0 the electric field cor-
responding to the resistive-wall wake depends not only on
the longitudinal distance z from the source, but also on the
radial position r. The term independent of δ skin describes
the effect of space charge.

The longitudinal impedance per unit length is re-
lated to Ẽs(k) as Z||(k) = −Ẽs(k)/js where k =√

k2
r + ω2/c2. From the impedance we compute the lon-

gitudinal Green function wake per unit length as W ′
0(z) =

−v/(2πjs)
∫ ∞
−∞ Ẽs(k)eikzdk, where, as before, js = λv.

If W ′
0(z) > 0 the wake field decelerates. Keeping only the

res.-wall terms, which depend on δskin, from (12) we get

W ′
0(z) ≈ −c2µ0

4π2

√
π

µ0σc

1
2b

β(sgn(z) − 1)
(
− γ2 − 5/4

(γ2 − 1)|z|3/2
− 15

16
b2

(γ2 − 1)|z|7/2

)
. (13)

In the ultra-relativistic limit this reduces to the familiar

W ′
0(z) ≈ c2µ0

4π2

√
π

µ0σc

1
2b

(sgn(z) − 1)
1

|z|3/2
. (14)

3 TRANSVERSE WAKE
For a transverse wake, every quantity, V , has the depen-

dence V = Ṽ exp(imφ+ iks− iωt) = Ṽ exp(imφ+ ikz)
on s, φ and t. In addition, all field components are nonzero,
and we can no longer assume that Ar and Aφ are zero. In
cylindrical coordinates we find

−1
r

∂

∂r

[
r
∂Ar

∂r

]
+

2im

r2
Aφ +

[
1 + m2

r2
+ k2

r

]
Ar = µ0jr

−1
r

∂

∂r

[
r
∂Aφ

∂r

]
+

[
1 + m2

r2
+ k2

r

]
Aφ − 2im

r2
Ar = µ0jφ

−1
r

∂

∂r

[
r
∂As

∂r

]
+

[
m2

r2
+ k2

r

]
As = µ0js

−1
r

∂

∂r

[
r
∂φ

∂r

]
+

[
m2

r2
+ k2

r

]
φ =

ρ0

ε0
.

The transverse components are decoupled by introducing
A+ ≡ Ar + iAφ, A− ≡ Ar − iAφ, and j± ≡ jr ± jφ,
which yields

1
r

∂

∂r

(
r
∂A±
∂r

)
−

(
(1 ± m)2

r2
+ k2

r

)
A± = −µ0j± . (15)

The original radial and azimuthal vector components are
Ar = (A+ + A−)/2 and Aφ = (A+ − A−)/(2i).

We only consider the dipole wake, m = ±1. Outside the
beam, the solution for each component is again a superpo-
sition of two Bessel functions, i.e., for m = 1,

Ã
(1)
+ = p

(1)
+ I2(krr) + q

(1)
+ K2(krr) (16)

Ã
(1)
− = p

(1)
− I0(krr) + q

(1)
− K0(krr) (17)

Ã(1)
s = p(1)

s I1(krr) + q(1)
s K1(krr) (18)

φ = p
(1)
0 I1(krr) + q

(1)
0 K1(krr) . (19)

and similarly for m = −1, for which I0 (K0) is exchanged
with I2 (K2). The coefficients of the Bessel functions for
m = −1 are called p

(−1)
+ , q(−1), etc., and, by symmetry,

they are equal to the corresponding coefficients for m = 1,
e.g., p

(−1)
0 = p

(1)
0 and p

(−1)
+ = p

(1)
− . Considering now a

perturbation of the form cosφ = (eiφ +e−iφ)/2, we obtain

Ar = (p+I2 + q+K2 + p−I0 + q−K0) cosφeikz

Aφ = (p+I2 + q+K2 − p−I0 − q−K0) sin φeikz

As = (psI1 + qsK1) cosφeikz

φ = (p0I1 + q0K1) cosφeikz ,

where the argument of the Bessel functions is (krr), and
we have dropped the superindex ‘(1)’ of all coefficients.

The Lorentz condition yields the two equations

kr

2
p
(1)
+ +

kr

2
p
(1)
− + ikp(1)

s − i
ω

c2
p
(1)
0 = 0 (20)

−kr

2
q
(1)
+ − kr

2
q
(1)
− + ikq(1)

s − i
ω

c2
q
(1)
0 = 0 . (21)

To determine these coefficients, we again consider the
source terms. As before, jφ = jr = 0 and js = vρ. But the
current source js is now displaced by a small transverse
distance d from the center of the pipe, so as to generate
a dipole moment. The free-space Green function for the
dipole current component is (−µ0λdv/r)/(2π), and the
dipole charge source is (−λd/r)/(2πε0). In the transverse
direction j+ = j− = jr = jφ = 0.

By equating the source terms and their corresponding
Green functions with the expansions of K1, K0 or K2

in the expressions for the vector potentials we find that
qs = −µ0λv/(2π) (krd), q0 = c2k/(ω)qs, q+ = 0,
q− = 0. Again we invoke the wall boundaries to determine
the remaining coefficients. If |λ0| � 1/b and |λ0| � k,
we find the same condition as for m = 0: iωBφ = Es(1 −
isgn(ω))/δskin = λ0Es . From Faraday-Maxwell’s law
we obtain a second boundary condition: −iωBs ≈ λ0Eφ .
The longitudinal and azimuthal field components are re-
lated to the potentials, Ar = Ãr cosφeikz , etc., via

Bφ =
(

ikÃr − ∂

∂r
Ãz

)
cosφeikz (22)

Bs =

(
1
r
Ãr +

∂Ãφ

∂r
+

Ãφ

r

)

sin φeikz (23)
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Eφ =
(

1
r
φ̃ + iωÃφ

)
sinφeikz (24)

Es =
(
−ikφ̃ + iωÃs

)
cosφeikz , (25)

so that the boundary conditions at r = b become

−ωkÃr − iω ∂Ãs/∂r = λ0(−ikφ̃ + iωÃs) (26)

λ0(φ̃/r+iωÃφ) = −iω(Ãr/r+∂Ãφ/∂r+Ãφ/r) . (27)

The remaining gauge freedom allows for the choice p 0 =
(c2k/ω)ps. Using this gauge, we can solve the two equa-
tions (26) and (27) together with the Lorentz conditions
(20) and (21), so as to obtain an expression relating p s and
qs. Inserting this into the formula for Es = Ẽs cosφeikz

and expanding to first order in δskin and up to second order
in kr, dropping powers of order higher than 2 in r, we find

Ẽs(k) = −iω
k2

r

k2
0

µ0λv

2π
dkr

[
K1(krr) +

ps

qs
I1(krr)

]

≈ −ckd
µ0λv

2π

1
b3r

[
δ
(0)
skin

(
r2 − 1

4
k2

r

k2
r2 − b2k2

r

4
r2

)

(sgn(ω) − i) + isgn(k)b
k2

r

k2
(b2 − r2)

]
. (28)

The transverse wake is now obtained using the Panofsky-
Wenzel theorem e(Er+(�v× �B)r) =

∫
(∂Fs/∂r)dz, which,

thanks to ω = vk, is valid as in the relativistic case, and
also implies Z⊥(k) = Z||(k)/k. This gives

F̃⊥ ≈ µ0idecλv

2π

1
b3

[
δ
(0)
skin

(
1 − 1

4
k2

r

k2
− b2k2

r

4

)

(sgn(ω) − i) − isgn(ω)b
k2

r

k2

(
1 +

b2

r2

)]
.(29)

The transverse impedance per unit length is Z⊥(k) =
−iF̃⊥/(eλvd). In the ultrarelativistic limit, kr → 0,
this agrees with the classical result of [1]. The trans-
verse Green function wake per unit length is W1(z) =
−1/(2πeλd)

∫ ∞
−∞ F̃⊥(k)eikzdk. If W1(z) < 0, the wake

is defocusing. Dropping the space-charge term, from (29)
the res.-wall wake function becomes

W1(z) ≈
√

πµ0c
3/2

4π2b3σ1/2
β

3b2 + 4(4γ2 − 5)z2

8(γ2 − 1)|z|5/2

(sgn(z) − 1) . (30)

In the ultra-relativistic limit this reduces to

W1(z) ≈
√

πµ0c
3/2

2π2b3σ1/2

1
|z|1/2

(sgn(z) − 1) . (31)

4 APPLICATIONS
Typical parameters of several low-energy proton or ion

accelerators are listed in Table 1. For each case we con-
sider a stainless chamber with σ = 1.4 × 106 Ω−1 m−1.
The longitudinal wake function at the chamber wall are

shown in Fig. 1, the transverse in Fig. 2. The differences
between the ultra-relativistic limit, (14) and (31), and the
more accurate formulae, (13) and (30), are significant for
z > −b/

√
10γ2 − 7 or γ < 3. The energy decreases from

SNS, over J-PARC and PS booster to an ECR source. The
latter also illustrates the effect of a smaller pipe radius b.

Table 1: Example Parameters
SNS J-PARC PS booster ECR

γ 2.1 1.4 1.05 1.003
σz 25 m 12 m 26 m 100 m
σr 2 cm 2 cm 3 mm 4 mm
b 8 cm 12.5 cm 30 cm 3 cm
QNb 1.5 × 1014 4 × 1013 1.2 × 1012 2 × 1013

Figure 1: Longitudinal wake |W ′
0|25/2π2b

√
σc/(c2µ0) at

r = b vs. distance z in m, according to (13) [colored] and
in the ultra-relativistic limit (14) [black solid].

Figure 2: Transverse r. w. wake |W1|23/2π2b3
√

σc/(c2µ0)
vs. distance z in m, according to (30) [colored] and in the
ultra-relativistic limit (31) [black solid].
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