RESISTIVE-WALL WAKE FOR NON-ULTRARELATIVISTIC BEAMS

Frank Zimmermann, CERN, Geneva, Switzerland; Katsunobu Oide, KEK, Tsukuba, Japan

Abstract

We compute the longitudinal and transverse wake fields for velocities smaller than *c*, and examine under which conditions the non-relativistic terms become important.

1 INTRODUCTION

Severals projects are under construction which aim to produce intense proton or ion beams at energies around 1 GeV, for example, the SNS and J-PARC. One possible performance limitations may arise from the resistive-wall impedance. The conventional treatment of the relativistic wall wake field considers an ultra-relativistic beam; see, *e.g.*, Refs. [1, 2]. Only few papers have attempted to treat the general case. A rare and early example is Ref. [3], but in the ultrarelativistic limit its wake field does not reduce to the conventional expression. In this note we derive the nonultrarelativistic longitudinal and transverse Green-function wake fields, through first order in the skin depth and second order in $1/\gamma$. We then apply these expressions to four examples.

2 LONGITUDINAL WAKE

We consider a beam pipe of radius b with skin depth $\delta_{skin} = \sqrt{2/(\mu_0 \sigma |\omega|)}$ with conductivity σ at angular frequency ω , and assume that the charge density $\lambda \exp(iks - i\omega t)$ travels at the center of the beam pipe with $\omega = vk$ and v < c. Following Chao's treatment of the ultrarelativistic case [1], we introduce the new variable z = (s - vt). Then all quantities have the same dependence $\exp(ikz)$ on s and t. The electric and magnetic fields are related to the scalar potential ϕ and the magnetic vector potential \vec{A} via $\vec{E} = -\nabla \phi - \partial \vec{A}/\partial t$ and $\vec{B} = \nabla \times \vec{A}$. Imposing the Lorentz condition $(\vec{\nabla} \cdot \vec{A} + (1/c^2)\partial \phi/\partial t + \mu_0 \sigma \phi) = 0$, the potentials \vec{A} and ϕ fulfill the equations

$$-\Delta \vec{A} + \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} + \mu_0 \sigma \frac{\partial \vec{A}}{\partial t} = \mu_0 (\vec{j} - \sigma \vec{E}) .$$
 (1)

$$-\Delta\phi + \frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} + \mu_0\sigma\frac{\partial\phi}{\partial t} = \frac{\rho}{\epsilon_0}.$$
 (2)

Inside the vacuum chamber $\sigma = 0$. The only nonzero field components are E_s , E_r and B_{ϕ} because of symmetry. We can thus set $A_{\phi} = 0$. One further degree of freedom allows us to choose $A_r = 0$ as well.

The Lorentz condition relates the two non-vanishing components as $\phi = (c^2 k/\omega)A_s$. The potentials must fulfill

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_s}{\partial r}\right) - k_r^2 A_s = -\mu_0 j_s , \qquad (3)$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) - k_r^2\phi \quad = \quad -\frac{\rho_0}{\epsilon_0} , \qquad (4)$$

where $k_r^2 = (k^2 - k_0^2) = k_0^2/(\beta^2 \gamma^2) > 0$ with $k_0 = \omega/c$. The right-hand side is zero except for inside the beam. Outside the beam, $A_s = \tilde{A}_s e^{ikz}$ is written as $\tilde{A}_s = pI_0(k_r r) + qK_0(k_r r)$, where the coefficient q is determined by the source current, and p by the surface condition at r = b. First we compute q. The source term j_s on the right hand side of (3) is $-\mu_0 \lambda v$. The Green function for a point source is $-\ln r/(2\pi)$; the modified Bessel function K_0 expands as $-\ln z$. This yields $q = -\mu_0 \lambda v/(2\pi)$. If (r, ϕ, z) are right-handed, the fields are

$$B_{\phi} = -pk_r I_1(k_r r) + qk_r K_1(k_r r) , \qquad (5)$$

$$E_s = i\omega \left(1 - \frac{k^2}{k_0^2}\right) \left(pI_0(k_r r) + qK_0(k_r r)\right) .$$
(6)

$$E_r = -\frac{c^2 k k_r}{\omega} \left(p I_1(k_r r) - q K_1(k_r r) \right) , \qquad (7)$$

where we have used $I'_0 = I_1$ and $K'_0 = -K_1$. The wall is characterized by $\vec{j} = \sigma \vec{E}$ and $\rho = 0$. For $b \gg \delta_{\rm skin}$, inside the wall we have

$$-\frac{\partial^2 E_s}{\partial r^2} \approx -\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial E_s}{\partial r} \right) = (i\mu_0 \sigma \omega - k_r^2) E_s , \quad (8)$$

with the solution $E_s = E_{s0} \exp(-\lambda r)$, where $\lambda^2 = -(i\mu_0\sigma\omega - k_r^2) = \lambda_0^2 + k_r^2$ and $\lambda_0 \equiv (1 - i \operatorname{sgn}(\omega))/\delta_{\operatorname{skin}}$, or

$$\lambda \approx \lambda_0 \left(1 + \frac{k_r^2}{2\lambda_0^2} \right) = \lambda_0 \left(1 + i \operatorname{sgn}(\omega) \frac{k_r^2 \delta_{\operatorname{skin}}^2}{4} \right) \ . \tag{9}$$

The second term represents a non-relativistic effect. We will neglect it, since it is of the order δ_{skin}^2 .

The relationship between B_{ϕ} and E_s follows from $\vec{\nabla} \times \vec{E} = -\partial \vec{B}/\partial t$ and $\vec{\nabla} \cdot \vec{E} = 0$ as $i\omega \tilde{B}_{\phi} = \tilde{E}_s(1 - i \operatorname{sgn}(\omega))/\delta_{\mathrm{skin}}$. Inserting the expressions for B_{ϕ} and E_s evaluated at r = b and solving for p we get

$$p = -\frac{(1 - i \text{sgn}(\omega))k_r K_0 + \delta_{\text{skin}} k_0^2 K_1}{(1 - i \text{sgn}(\omega))k_r I_0 - \delta_{\text{skin}} k_0^2 I_1} q , \qquad (10)$$

where all Bessel functions have the argument $x \equiv k_r b$. The magnetic vector potential $A_s = \tilde{A}_s e^{ikz}$ becomes

$$\tilde{A}_{s} = -\frac{\mu_{0}\lambda v}{2\pi} \left[K_{0}(k_{r}r) - \frac{(1-i\mathrm{sgn}(\omega))K_{0}(x) + \delta_{\mathrm{skin}}k_{0}^{2}K_{1}(x)}{(1-i\mathrm{sgn}(\omega))I_{0}(x) - \delta_{\mathrm{skin}}k_{0}^{2}I_{1}(x)} I_{0}(k_{r}r) \right] .$$
(11)

Computing from this the longitudinal electric field $E_s = \tilde{E}_s e^{ikz}$ as $\tilde{E}_s = -i\omega k_r^2/k_0^2 \tilde{A}_s$, and expanding in k_r and

0-7803-7739-9 ©2003 IEEE

 $\delta_{\rm skin}$, we obtain

$$\tilde{E}_{s}(k) \approx \frac{\mu_{0}\lambda vck}{2\pi} \left[\frac{(\mathrm{sgn}(k) - i)\delta_{\mathrm{skin}}^{(0)}}{2b} \left(1 - \frac{1}{4}\frac{k_{r}^{2}}{k^{2}} - \frac{k_{r}^{2}(2b^{2} - r^{2})}{4} \right) - i\frac{k_{r}^{2}}{k^{2}}\ln\frac{r}{b} \right], \quad (12)$$

where $\delta_{\rm skin}^{(0)}$ refers to the skin depth at angular frequency ck, and we have assumed $|k| > k_r$. In the ultrarelativistic limit $k_r \to 0$, the term depending on $\delta_{\rm skin}^{(0)}$ agrees with the result (2.77) in Ref. [1]. If $k_r \neq 0$ the electric field corresponding to the resistive-wall wake depends not only on the longitudinal distance z from the source, but also on the radial position r. The term independent of $\delta_{\rm skin}$ describes the effect of space charge.

The longitudinal impedance per unit length is related to $\tilde{E}_s(k)$ as $Z_{||}(k) = -\tilde{E}_s(k)/j_s$ where $k = \sqrt{k_r^2 + \omega^2/c^2}$. From the impedance we compute the longitudinal Green function wake per unit length as $W'_0(z) = -v/(2\pi j_s) \int_{-\infty}^{\infty} \tilde{E}_s(k)e^{ikz}dk$, where, as before, $j_s = \lambda v$. If $W'_0(z) > 0$ the wake field decelerates. Keeping only the res.-wall terms, which depend on δ_{skin} , from (12) we get

$$W_0'(z) \approx -\frac{c^2 \mu_0}{4\pi^2} \sqrt{\frac{\pi}{\mu_0 \sigma c}} \frac{1}{2b} \beta(\operatorname{sgn}(z) - 1) \\ \left(-\frac{\gamma^2 - 5/4}{(\gamma^2 - 1)|z|^{3/2}} - \frac{15}{16} \frac{b^2}{(\gamma^2 - 1)|z|^{7/2}} \right) . (13)$$

In the ultra-relativistic limit this reduces to the familiar

$$W_0'(z) \approx \frac{c^2 \mu_0}{4\pi^2} \sqrt{\frac{\pi}{\mu_0 \sigma c}} \frac{1}{2b} (\operatorname{sgn}(z) - 1) \frac{1}{|z|^{3/2}} .$$
 (14)

3 TRANSVERSE WAKE

For a transverse wake, every quantity, V, has the dependence $V = \tilde{V} \exp(im\phi + iks - i\omega t) = \tilde{V} \exp(im\phi + ikz)$ on s, ϕ and t. In addition, all field components are nonzero, and we can no longer assume that A_r and A_{ϕ} are zero. In cylindrical coordinates we find

$$-\frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial A_r}{\partial r}\right] + \frac{2im}{r^2}A_{\phi} + \left[\frac{1+m^2}{r^2} + k_r^2\right]A_r = \mu_0 j_r$$
$$-\frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial A_{\phi}}{\partial r}\right] + \left[\frac{1+m^2}{r^2} + k_r^2\right]A_{\phi} - \frac{2im}{r^2}A_r = \mu_0 j_{\phi}$$
$$-\frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial A_s}{\partial r}\right] + \left[\frac{m^2}{r^2} + k_r^2\right]A_s = \mu_0 j_s$$
$$-\frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial \phi}{\partial r}\right] + \left[\frac{m^2}{r^2} + k_r^2\right]\phi = \frac{\rho_0}{\epsilon_0}.$$

The transverse components are decoupled by introducing $A_+ \equiv A_r + iA_{\phi}$, $A_- \equiv A_r - iA_{\phi}$, and $j_{\pm} \equiv j_r \pm j_{\phi}$, which yields

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_{\pm}}{\partial r}\right) - \left(\frac{(1\pm m)^2}{r^2} + k_r^2\right)A_{\pm} = -\mu_0 j_{\pm} .$$
(15)

The original radial and azimuthal vector components are $A_r = (A_+ + A_-)/2$ and $A_{\phi} = (A_+ - A_-)/(2i)$.

We only consider the dipole wake, $m = \pm 1$. Outside the beam, the solution for each component is again a superposition of two Bessel functions, *i.e.*, for m = 1,

$$\tilde{A}_{+}^{(1)} = p_{+}^{(1)} I_2(k_r r) + q_{+}^{(1)} K_2(k_r r)$$
(16)

$$\hat{A}_{-}^{(1)} = p_{-}^{(1)}I_0(k_r r) + q_{-}^{(1)}K_0(k_r r)$$
(17)

$$\tilde{A}_{s}^{(1)} = p_{s}^{(1)}I_{1}(k_{r}r) + q_{s}^{(1)}K_{1}(k_{r}r)$$
(18)

$$\phi = p_0^{(1)} I_1(k_r r) + q_0^{(1)} K_1(k_r r) .$$
 (19)

and similarly for m = -1, for which $I_0(K_0)$ is exchanged with $I_2(K_2)$. The coefficients of the Bessel functions for m = -1 are called $p_+^{(-1)}$, $q^{(-1)}$, etc., and, by symmetry, they are equal to the corresponding coefficients for m = 1, e.g., $p_0^{(-1)} = p_0^{(1)}$ and $p_+^{(-1)} = p_-^{(1)}$. Considering now a perturbation of the form $\cos \phi = (e^{i\phi} + e^{-i\phi})/2$, we obtain

$$\begin{aligned} A_r &= (p_+ I_2 + q_+ K_2 + p_- I_0 + q_- K_0) \cos \phi e^{ikz} \\ A_\phi &= (p_+ I_2 + q_+ K_2 - p_- I_0 - q_- K_0) \sin \phi e^{ikz} \\ A_s &= (p_s I_1 + q_s K_1) \cos \phi e^{ikz} \\ \phi &= (p_0 I_1 + q_0 K_1) \cos \phi e^{ikz} , \end{aligned}$$

where the argument of the Bessel functions is $(k_r r)$, and we have dropped the superindex '(1)' of all coefficients.

The Lorentz condition yields the two equations

$$\frac{k_r}{2}p_+^{(1)} + \frac{k_r}{2}p_-^{(1)} + ikp_s^{(1)} - i\frac{\omega}{c^2}p_0^{(1)} = 0 \quad (20)$$

$$-\frac{k_r}{2}q_+^{(1)} - \frac{k_r}{2}q_-^{(1)} + ikq_s^{(1)} - i\frac{\omega}{c^2}q_0^{(1)} = 0.$$
(21)

To determine these coefficients, we again consider the source terms. As before, $j_{\phi} = j_r = 0$ and $j_s = v\rho$. But the current source j_s is now displaced by a small transverse distance d from the center of the pipe, so as to generate a dipole moment. The free-space Green function for the dipole current component is $(-\mu_0 \lambda dv/r)/(2\pi)$, and the dipole charge source is $(-\lambda d/r)/(2\pi\epsilon_0)$. In the transverse direction $j_+ = j_- = j_r = j_{\phi} = 0$.

By equating the source terms and their corresponding Green functions with the expansions of K_1 , K_0 or K_2 in the expressions for the vector potentials we find that $q_s = -\mu_0 \lambda v/(2\pi) (k_r d)$, $q_0 = c^2 k/(\omega) q_s$, $q_+ = 0$, $q_- = 0$. Again we invoke the wall boundaries to determine the remaining coefficients. If $|\lambda_0| \gg 1/b$ and $|\lambda_0| \gg k$, we find the same condition as for m = 0: $i\omega B_{\phi} = E_s(1 - i \operatorname{sgn}(\omega))/\delta_{\operatorname{skin}} = \lambda_0 E_s$. From Faraday-Maxwell's law we obtain a second boundary condition: $-i\omega B_s \approx \lambda_0 E_{\phi}$. The longitudinal and azimuthal field components are related to the potentials, $A_r = \tilde{A}_r \cos \phi e^{ikz}$, etc., via

$$B_{\phi} = \left(ik\tilde{A}_r - \frac{\partial}{\partial r}\tilde{A}_z\right)\cos\phi e^{ikz}$$
(22)

$$B_s = \left(\frac{1}{r}\tilde{A}_r + \frac{\partial A_\phi}{\partial r} + \frac{A_\phi}{r}\right)\sin\phi e^{ikz} \quad (23)$$

$$E_{\phi} = \left(\frac{1}{r}\tilde{\phi} + i\omega\tilde{A}_{\phi}\right)\sin\phi e^{ikz}$$
(24)

$$E_s = \left(-ik\tilde{\phi} + i\omega\tilde{A}_s\right)\cos\phi e^{ikz} , \qquad (25)$$

so that the boundary conditions at r = b become

$$-\omega k\tilde{A}_r - i\omega \;\partial \tilde{A}_s / \partial r = \lambda_0 (-ik\tilde{\phi} + i\omega\tilde{A}_s) \tag{26}$$

$$\lambda_0(\tilde{\phi}/r + i\omega\tilde{A}_{\phi}) = -i\omega(\tilde{A}_r/r + \partial\tilde{A}_{\phi}/\partial r + \tilde{A}_{\phi}/r) .$$
(27)

The remaining gauge freedom allows for the choice $p_0 = (c^2k/\omega)p_s$. Using this gauge, we can solve the two equations (26) and (27) together with the Lorentz conditions (20) and (21), so as to obtain an expression relating p_s and q_s . Inserting this into the formula for $E_s = \tilde{E}_s \cos \phi e^{ikz}$ and expanding to first order in δ_{skin} and up to second order in k_r , dropping powers of order higher than 2 in r, we find

$$\tilde{E}_{s}(k) = -i\omega \frac{k_{r}^{2}}{k_{0}^{2}} \frac{\mu_{0}\lambda v}{2\pi} dk_{r} \left[K_{1}(k_{r}r) + \frac{p_{s}}{q_{s}} I_{1}(k_{r}r) \right]$$

$$\approx -ckd \frac{\mu_{0}\lambda v}{2\pi} \frac{1}{b^{3}r} \left[\delta_{\text{skin}}^{(0)} \left(r^{2} - \frac{1}{4} \frac{k_{r}^{2}}{k^{2}} r^{2} - \frac{b^{2}k_{r}^{2}}{4} r^{2} \right) \right]$$

$$(\text{sgn}(\omega) - i) + i\text{sgn}(k) b \frac{k_{r}^{2}}{k^{2}} (b^{2} - r^{2}) \right]. \quad (28)$$

The transverse wake is now obtained using the Panofsky-Wenzel theorem $e(E_r + (\vec{v} \times \vec{B})_r) = \int (\partial F_s / \partial r) dz$, which, thanks to $\omega = vk$, is valid as in the relativistic case, and also implies $Z_{\perp}(k) = Z_{||}(k)/k$. This gives

$$\tilde{F}_{\perp} \approx \frac{\mu_0 i dec \lambda v}{2\pi} \frac{1}{b^3} \left[\delta_{\rm skin}^{(0)} \left(1 - \frac{1}{4} \frac{k_r^2}{k^2} - \frac{b^2 k_r^2}{4} \right) \right] (\operatorname{sgn}(\omega) - i) - i \operatorname{sgn}(\omega) b \frac{k_r^2}{k^2} \left(1 + \frac{b^2}{r^2} \right) \right] (29)$$

The transverse impedance per unit length is $Z_{\perp}(k) = -i\tilde{F}_{\perp}/(e\lambda vd)$. In the ultrarelativistic limit, $k_r \to 0$, this agrees with the classical result of [1]. The transverse Green function wake per unit length is $W_1(z) = -1/(2\pi e\lambda d) \int_{-\infty}^{\infty} \tilde{F}_{\perp}(k) e^{ikz} dk$. If $W_1(z) < 0$, the wake is defocusing. Dropping the space-charge term, from (29) the res.-wall wake function becomes

$$W_{1}(z) \approx \frac{\sqrt{\pi\mu_{0}}c^{3/2}}{4\pi^{2}b^{3}\sigma^{1/2}}\beta \frac{3b^{2}+4(4\gamma^{2}-5)z^{2}}{8(\gamma^{2}-1)|z|^{5/2}}$$

$$(\operatorname{sgn}(z)-1).$$
(30)

In the ultra-relativistic limit this reduces to

$$W_1(z) \approx \frac{\sqrt{\pi\mu_0}c^{3/2}}{2\pi^2 b^3 \sigma^{1/2}} \frac{1}{|z|^{1/2}} (\operatorname{sgn}(z) - 1) .$$
 (31)

4 APPLICATIONS

Typical parameters of several low-energy proton or ion accelerators are listed in Table 1. For each case we consider a stainless chamber with $\sigma = 1.4 \times 10^6 \ \Omega^{-1} \ m^{-1}$. The longitudinal wake function at the chamber wall are

shown in Fig. 1, the transverse in Fig. 2. The differences between the ultra-relativistic limit, (14) and (31), and the more accurate formulae, (13) and (30), are significant for $z > -b/\sqrt{10\gamma^2 - 7}$ or $\gamma < 3$. The energy decreases from SNS, over J-PARC and PS booster to an ECR source. The latter also illustrates the effect of a smaller pipe radius *b*.

Table 1: Example Parameters				
	SNS	J-PARC	PS booster	ECR
γ	2.1	1.4	1.05	1.003
σ_z	25 m	12 m	26 m	100 m
σ_r	2 cm	2 cm	3 mm	4 mm
b	8 cm	12.5 cm	30 cm	3 cm
QN_b	$1.5 imes 10^{14}$	4×10^{13}	$1.2 imes 10^{12}$	2×10^{13}

Figure 1: Longitudinal wake $|W'_0|2^{5/2}\pi^2 b\sqrt{\sigma c}/(c^2\mu_0)$ at r = b vs. distance z in m, according to (13) [colored] and in the ultra-relativistic limit (14) [black solid].

Figure 2: Transverse r. w. wake $|W_1|2^{3/2}\pi^2 b^3 \sqrt{\sigma c}/(c^2 \mu_0)$ vs. distance z in m, according to (30) [colored] and in the ultra-relativistic limit (31) [black solid].

5 REFERENCES

- A. Chao, "Physics of Collective Beam Instabilities in High Energy Accelerators," J. Wiley (1993).
- [2] B. Zotter, S. Heifets, "Impedances and Wakes in High-Energy Particle Accelerators," World Scientific (1998).
- [3] P. Morton, V.K. Neil, A. Sessler, J. Appl. Phys. 37, 3875 (1966).