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Abstract

The linear one-turn map of a storage ring contains cou-
pling information on which a correction algorithm can be
based. In principal, the one-turn matrix can be fitted from
turn-by-turn data of beam position monitors after a kick
was applied. However, the so obtained coupling informa-
tion often sinks into the noise floor. The signal-to-noise
ratio of the coupling information can be greatly enhanced
by fitting maps for larger turn numbers N, equal to half the
beat period. With the so obtained N-turn map an automated
global coupling correction is possible without the need for
a tune change. This is demonstrated for the Relativistic
Heavy Ion Collider where the algorithm is implemented for
operational use at injection.

1 INTRODUCTION
Linear coupling [1–3] can make it impossible to set tunes

to values close to the coupling resonance Qx = Qy. These
tunes are desirable since the resonance density in this area
is low. A widely used method to measure global linear cou-
pling, is to move the tunes until the minimum tune separa-
tion ∆Qmin = |Qx − Qy|min is reached [1]. A coupling
correction is then performed by scanning skew quadrupole
corrector settings to minimize ∆Qmin. This approach is
slow, can lead to beam losses, and cannot be practically ap-
plied during an energy ramp. The decoupling method pre-
sented here overcomes all these shortcomings. It is based
on N -turn maps, fitted from turn-by-turn data after a trans-
verse kick was applied. Based on fitted N -turn maps the
minimum tune approach ∆Qmin and skew corrector set-
tings to minimize this quantity can be obtained without a
tune change. The algorithm lends itself to full automation
and allows a coupling correction within seconds. An im-
plementation at RHIC is shown.

2 MATRIX DESCRIPTION
We denote by �z = (x, x′, y, y′)T the 4-vector with the

positions and slopes at a certain observation point in the
ring (see Fig. 1). The linear one-turn map M transforms
the 4-vector �z i at turn i into the 4-vector �z i+1 at turn i + 1
via

�zi+1 = M�zi. (1)
The 4×4 matrix M can be written in terms of 2×2 matrices
as

M =
(

A B
C D

)
. (2)

The machine is said to be globally decoupled if B = 0,
which implies C = 0. If the linear coupling is caused
by a number of small sources, rather than a few large ones,
global decoupling at any observation point will usually lead
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Figure 1: Observation point at the beginning of an arc and
beam trajectory in the arc.

to a machine that is almost globally decoupled at any other
observation point [3].

We denote by (QA, QD) the eigentunes of the map (2),
and also use the quantities µA,D = 2πQA,D. The eigen-
tunes can be determined with good precision from turn-by-
turn data by filtering, Fourier transformation, and interpo-
lation [4]. The minimum tune approach is then [3]

∆Qmin =

√
det |C + B|

π(sin µA + sin µD)
(3)

where B = −SBTS, and S is the symplectic form.
Global decoupling amounts to manipulations that result in
det |C + B| = 0. Note that the sign of det |C + B| is
negative on sum resonances and positive on difference res-
onances [3].

For weak coupling, the largest elements of the matrices
B and C can be more than an order of magnitude smaller
than those of the matrices A and D. We now consider a N -
turn map and chose the turn number N such that the values
of the sub-matrices BN and CN in the multi-turn map

MN =
(
AN BN

CN DN

)
, (4)

are maximized. With coupled motion energy is exchanged
between the transverse planes with the beat frequency. To
observe the maximum effect of the energy transfer from
one plane to the other, one has to wait for half the beat
period. This can be seen in Fig. 2 (a) and (b). The optimum
N is thus approximately

N ≈ 1
2|QA − QD| =

π

|µA − µD| . (5)

The coupling information can also be obtained from the N -
turn map since [5]

C + B = (CN + BN ) × cosµA − cosµD

cos(NµA) − cos(NµD)
. (6)

0-7803-7739-9 ©2003 IEEE 2222

Proceedings of the 2003 Particle Accelerator Conference



∆Qmin can then be computed with Eq. (3). Based on the
obtained value for C + B, skew correctors can be set so
that det |C + B| = 0 when the correctors are included.
This will be shown in Sec. 4.

3 CONSTRUCTION OF A N-TURN MAP

We assume that m consecutive turns of a 4-vector �z =
(x, x′, y, y′)T were fitted from turn-by-turn orbit data after
a transverse kick. For weak coupling this can be done in a
robust way, using a number of beam position monitors in
an arc [5]. For the N -turn map one has

�zk+N = MN�zk. (7)

To fit the matrix elements of MN the function

χ2(MN ) =
m−N∑
k=1

4∑
i=1


zk+N

i −
4∑

j=1

MN
ij zk

j




2

(8)

is minimized. Introducing the two 4 × 4 matrices Sa and
Sb with elements

Sa
ij =

m−N∑
k=1

zk+N
i zk

j and Sb
ij =

m−N∑
k=1

zk
i zk

j , (9)

the minimization of χ2(MN ) leads to the direct solution

MN = Sa(Sb)−1 (10)

In an implementation the condition detSb �= 0 needs to
be checked, and the direct solution of Eq. (10) may not the
best way to solve the problem numerically [6].

4 LINEAR COUPLING CORRECTION
We assume that the eigentunes QA,D were obtained from

a Fourier transform of turn-by-turn data, and the matrix

K = C + B, (11)

from a N -turn map with Eq. (6).
For a correction algorithm we work in a coordinate sys-

tem, in which the linear motion is represented by circles in
phase space. The transformation into the new coordinate
system

�̃z = B�z (12)
is provided by the matrix

B=
(

Bx 0
0 By

)
with Bx =

(
β
−1/2
x 0

αxβ
−1/2
x β

1/2
x

)
(13)

and similar for By [3]. The matrix B is computed at the
observation point. The matrix K̃ can be written as

K̃ = ByCB−1
x + BxBB−1

y . (14)

We denote by µi
x the horizontal phase advance from the

observation point to the skew quadrupole i, and use

Si
x = sin µi

x , Ci
x = cosµi

x,

S ī
x = sin(µx − µi

x), C ī
x = cos(µx − µi

x).
(15)

In the new coordinate system we have for a number of weak
skew quadrupoles [3]

C̃ =



∑

ki

√
βi

xβi
y S ī

yCi
x

∑
ki

√
βi

xβi
y S ī

ySi
x∑

ki

√
βi

xβi
y C ī

yCi
x

∑
ki

√
βi

xβi
y C ī

ySi
x


 (16)

and a similar expression for B̃. The strength ki is the in-
verse focal length fi of skew quadrupole i. Assume a cor-
rector family has the same skew corrector strength k1 in all
correctors and results in

K̃1 = k1(C̃1 + B̃1). (17)

where the elements in C̃1 and B̃1 were divided by k1. For a
global coupling correction we want to minimize the quan-
tity

χ(k1) = det |K̃ + k1K̃1|. (18)
It follows

k1 = − K1

2 det K̃1
(19)

with

K1 = K̃11K̃
1
22 − K̃12K̃

1
21 + K̃1

11K̃22 − K̃1
12K̃21. (20)

In principal two correctors or families are sufficient to cor-
rect linear coupling globally (unless their matrices K̃1 and
K̃2 are linear dependent). After the first strength k1 has
been found, the second strength k2 can be found with
Eqs. (19) and (20), by replacing k1 by k2, K̃1 by K̃2, and
K̃ by K̃ + k1K̃1.

5 APPLICATION AT RHIC
The above described algorithm for global linear coupling

correction has been implemented within the RHIC injec-
tion optimization application. After beam is injected, turn-
by-turn data are automatically acquired from 12 beam po-
sition monitors in the horizontal and 12 monitors in the
vertical plane. 1024 turns are recorded in each of the
beam position monitors while the beam exhibits injection
oscillations. The application has access to an online ma-
chine optics model, and can read and set skew corrector
strengths [7].

In a test the ∆Qmin computed from the N -turn maps
was compared with the ∆Qmin obtained by bringing the
tunes together [5]. Good agreement could be demonstrated
over a ∆Q range sufficiently large to cover operation (both
RHIC tunes are kept between 0.2 and 0.25).

As an example for a coupling measurement and correc-
tion we show the first test of the algorithm in operation,
performed in the RHIC Blue ring with deuteron beam. In
Fig. 2 (a) and (b) the beam oscillation in the horizontal and
vertical plane following the injection are shown. The beat-
ing is clearly visible.

From the measured eigentunes, the optimum turn num-
ber N is determined with Eq. (5). We get N = 67 and the
fitted N -turn map is

M67
before =



−0.01 2.75 −2.28 −13.18
−0.02 0.49 −0.17 −1.40
−1.02 22.29 0.13 1.84
0.02 −1.31 −0.04 −0.23


 .

(21)
from which ∆Qmin = 0.0064 is obtained.

RHIC has three families for global decoupling, due to
the six-fold symmetry of the machine. Two of those fami-
lies are selected to minimize the coupling. The predicted
∆Qmin after correction is 0.0003 (see Fig. 2 (a)). A
nonzero prediction is a sign of measurement errors in the
N -turn map, or a mismatch between the optics model and
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the machine. The correction can be implemented by press-
ing a single button in the application.

The result of the coupling correction is shown in
Figs. 2 (c) and (d). The recoherence after 650 turns is due
to synchrotron motion and nonzero chromaticity. 650 turns
are a synchrotron period. After correction, we have

M122
after =



−0.26 −11.77 3.62 4.49
0.01 −0.40 0.06 0.29
0.19 −5.62 −0.17 −1.23
0.05 2.65 0.22 0.30


 (22)

and ∆Qmin is reduced to 0.0023. Note the reduction in
the matrix elements M14 and M32. The ∆Qmin reached
by the correction was confirmed by a tune measurement af-
ter moving the tunes together. In operation it was found
that the coupling correction cannot significantly improved
beyond ∆Qmin = 0.002. This is consistent with the
∆Qmin = 0.0011 predicted for the next correction.

6 SUMMARY
A method for global coupling measurement and correc-

tion is presented that is based on N -turn maps fitted from
turn-by-turn beam position data. N is chosen so as to max-
imize the signal-to-noise ratio of the coupling information.
By using more than two monitors per plane the robustness
is increased and the effect of random errors in beam po-
sition monitors is ameliorated. No tune change is needed
for either the measurement or the correction. The method
is implemented for operation as part of the injection opti-
mization application at RHIC. It allows a global coupling
correction within seconds after the turn-by-turn data are ac-
quired. The method may be used in situations other than
injection, when turn-by-turn data of free beam oscillations
can be acquired.
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Figure 2: Turn-by-turn signals before and after a coupling
correction at injection. In part (a) and (b) the horizontal
and vertical injection oscillations are shown before a cou-
pling correction. Part (a) also shows the computed ∆Qmin

and the predicted ∆Qmin after a coupling correction. Parts
(c) and (d) show the situation after the computed corrector
values were applied.
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