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Abstract

Ionization cooling lattices simultaneously require small
beta-functions at the absorber and large energy acceptances
to be effective. Simultaneously achieving these goals
as well as having a good dynamic aperture requires that
the lattice be relatively compact. If one wishes to avoid
solenoids, one choice for creating such a lattice is to use
combined-function magnets. These magnets can simulta-
neously focus in both planes, allowing one to achieve a low
beta in both planes with a minimum number of magnets. In
this paper we explore the design of lattices which contain
only combined-function bending magnets using a thin-lens
approximation, showing how to optimally achieve the re-
quirements for muon cooling.

INTRODUCTION

Ionization cooling is needed in most scenarios for muon-
based accelerators such as neutrino factories and muon
colliders. Cooling rings have been proposed as a cost-
effective means for cooling in all six phase space dimen-
sions [1, 2, 3]. Cooling rings have traditionally used
solenoids, but it is not absolutely necessary to do so.

Since one must bend and focus in the cooling ring, it is
logical to use combined-function bends in a non-solenoid
cooling ring. For the simple designs here, symmetry will
dictate that one chooses the magnet gradients to focus
equally in both planes. Thus, all analyses here will be done
in a single plane.

For a combined-function bend which focuses equally in
both planes, the integrated focusing strength F is

F =
Bcθ

2pc/q
, (1)

where B is the dipole component of the field, θ is the bend-
ing angle, p is the momentum, q is the particle’s charge, and
c is the speed of light. Note the inverse dependence of F
on momentum.

There are two parameters that are of importance in a
cooling lattice: the energy bandwidth (should be large) and
the beta function at the absorber (should be small). They
compete with each other: when the energy bandwidth in-
creases, so does the maximum beta function. The energy
bandwidth is described by the half-width of the relative mo-
mentum spread ∆:

∆ = (pmax − pmin)/(pmax + pmin), (2)
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Figure 1: Layout with one bend per cell.

where pmin and pmax are the minimum and maximum mo-
mentum respectively. It is also useful to define a reference
momentum to be

pref = (pmax + pmin)/2 (3)

In these calculations, the change in the closed orbit is
ignored. As the closed orbit changes, the focusing strength
in the combined function bend will change. In particular, a
bending magnet that focuses equally in both planes at the
reference energy does not do so off-energy.

ONE BEND PER CELL

If there is only one bend per cell, as shown in Fig. 1, and
the cell length is L, then the beta function at the absorber is

L

√
1 − LF/4

LF
. (4)

This lattice is unstable when LF > 4; thus, there is a mo-
mentum threshold below which the lattice is unstable. The
lattice is stable for arbitrarily large momentum. The max-
imum β-function at the absorber occurs at the largest mo-
mentum within the passband. Thus,

βmax = 2L

√
2∆

1 − ∆
∆ =

β2
max

8L2 + β2
max

. (5)

The required magnetic field is

Bθ =
2
Lc

prefc

q
(1 − ∆) (6)

=
2
c

prefc

q

8L

8L2 + β2
max

=
2
Lc

pminc

q
. (7)

Note that if βmax is much less than L, then the energy accep-
tance is very small. Thus, this is probably not an optimal
configuration for a cooling ring.

TWO BENDS PER CELL

Now, consider a lattice with two bends per cell, as shown
in Fig. 2. Symmetry considerations dictate that the two
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Figure 2: Layout with two bends per cell.
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Figure 3: Beta as a function of momentum. The solid line
is for LA = 0.9 m and LR = 1.1 m, and the dashed line is
for LA = 1.1 m and LR = 0.9 m.

bends be identical. The beta function at the absorber is

LA

2

√√√√√√√

(
2

LA
− F

)(
2

LA
+

2
LR

− F

)
(

2
LR

− F

)
F

, (8)

where LA is the length of the drift containing the absorber,
and LR is the length of the other drift (presumably contain-
ing RF).

As a function of momentum, the β-function has two ze-
ros, when F = 2/LA and when F = 2/LA +2/LR. There
are two poles, when F = 0 and F = 2/LR. There are
thus two passbands: from the F = 2/LA + 2/LR to the
larger of 2/LA and 2/LR, and from the smaller of 2/LA

and 2/LR and 0. These passbands are given in terms of
F , but they are equivalent to passbands that are determined
by the momentum. One passband is unbounded in momen-
tum, and the other is a bounded region of momentum. The
bounded region can either have zeros at both ends or a zero
at one end and a pole on the other, as shown in Fig. 3. If the
bounded region has an infinite β-function at one end, then
the unbounded region will have a zero in the beta function
β-function at the low momentum end, and will go to infin-
ity as the momentum goes to infinity. Thus, the β-function
gets large in either region. However, if the β-function is
zero on both sides of the bounded region (it cannot be zero
on both sides of the unbounded region), it will have a maxi-
mum value in that region. As can be seen in Fig. 3, one can

achieve a lower maximum beta by running in this bounded
region with zeros of the beta function on both ends of the
region. The peak β-function can be written in terms of ∆
as

LR − √
L2

R − L2
A

2

=
LA

2

(
1 − ∆
2∆

−
√

1 − 2∆ − 3∆2

2∆

)

=
LR

2

(
1 −

√
1 − 2∆ − 3∆2

1 − ∆

)
. (9)

Inverting this equation gives

∆ =

√
βmax(LR − βmax)

LR +
√

βmax(LR − βmax)
. (10)

Note that the maximum ∆ is 1/3 (giving an energy accep-
tance of a factor of 2), and occurs when βmax = LR/2. The
relationship between the lengths is

LA = LR
2∆

1 − ∆
= 2

√
βmax(LR − βmax), (11)

or inverting,

∆ =
LA

2LR + LA
. (12)

Finally, the field strength required is given by

Bθ =
2

cLR

prefc

q

1 − ∆2

∆
(13)

=
8
c

prefc

q

LR + LA

LA(2LR + LA)
. (14)

As one reduces βmax relative to LR, the energy accep-
tance decreases, and the field required in the bending mag-
nets increases.

EXAMPLE

Let’s say that a 1 m drift is needed for the RF, and the
maximum desired beta function at the absorber is 0.25 m.
The reference momentum for the lattice is 200 MeV/c.

With only one bend per cell, the energy acceptance of
this lattice is less than 1%. This is unacceptable for a cool-
ing lattice. If there are two bends per cell, the energy ac-
ceptance is ±30%. The length of the absorber straight is
0.87 m. Bθ is about 4 T; if we have 8 bends in the ring, this
corresponds to bending fields of 5.1 T, and correspondingly
lower if one uses fewer bends. The length of this bend is
about 10 cm. Using 4 bends gives a 2.6 T field with 41 cm
bend lengths.

The required magnet apertures are difficult to determine,
since the beta functions go to infinity as the ends of the
momentum passband; an energy cutoff must be introduced
because of that, or the ellipsoidal beam distribution must
be taken into account.
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Figure 4: Beta function at the absorber as a function of en-
ergy for combined-function magnets with linear midplane
field dependence. The dotted line is the thin-lens model,
the solid line is βx, and the dashed line is βy .
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Figure 5: Closed orbit as a function of energy at the ab-
sorber side of the magnet for combined-function magnets
with linear midplane field dependence.

Thick Magnets

Now, instead of using a thin-lens model, use thick
combined-function bends. If we use a bend whose field
is linear in the midplane, we get the beta functions shown
in Fig. 4. Note the substantially reduced energy acceptance
from the linear model. The reason for this reduced energy
acceptance is the closed orbit variation with energy (see
Fig. 5). When the closed orbit is at a larger radius, the ver-
tical focusing is increased since the length of the orbit in the
magnet is longer, but the horizontal focusing is decreased
since the geometric contribution to focusing is reduced due
to the larger radius of curvature.

One can try to correct the chromaticity by adding a sex-
tupole component to the magnets. The optimal way to do
this is to use a magnet which maintains equal focusing in
both planes at all positions in the magnet: a magnet whose
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Figure 6: Beta function at the absorber as a function of en-
ergy for power law midplane field dependence. The dotted
line is the thin-lens model; the solid line is for the actual
magnet (both planes).

midplane field is

B(x) = B0 (1 + x/ρ)−1/2
. (15)

Figure 6 shows the beta functions at the absorber in this
case. The energy acceptance has been greatly improved
from Fig. 4, but is still not as large as the linear model
suggests. Nor should one expect improvement from here:
since the beta functions are identical in the two planes,
changing the sextupole component would likely make the
linear resonances in one plane closer together, while mov-
ing them further apart in the other plane.

CONCLUSIONS

A thin-lens model can be used to approximately design
and predict the qualitative behavior of a simple cooling ring
using only combined-function bending magnets. Probably
the most important use of this is to predict the parametric
dependence of and interrelationship between performance
parameters for such a cooling ring.

A simple design with aggressive lattice parameters
seems to be a bit unrealistic: the magnets are very short,
and the ring circumference is very low as well. With less
ambitious lattice parameters (a relaxed beta function, for
instance), the lattice may end up being more realistic.

This paper doesn’t look at the dynamic aperture of these
lattices: the use of highly nonlinear magnets may have a
negative impact on that.
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