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Abstract

A signature of fixed-field acceleration is that the orbit
of the beam centroid unavoidably changes with energy.
The corresponding change in pathlength results in phase
slip relative to the fixed-frequency accelerating waveform.
Nevertheless, depending on the location of the fixed-points
of the motion, synchronous or asynchronous cross-crest ac-
celeration is possible for a limited number of turns. The
possibility of asynchronous rf can be understood simply
by realizing that for acceleration in a single pass, the ini-
tial cavity phases can be set to exactly compensate for the
phase slip. The present work explores the influence of the
path-length fixed points and of rf manipulations on the lon-
gitudinal dynamics in FFAGs.

INTRODUCTION

In a regime where acceleration is completed in a few
turns or tens of turns, cost/technology constraints imply
that both the magnetic field and the radio frequency are
fixed and that the particle beam transits the radial aperture
during acceleration. The fastest acceleration and the most
effective use of voltage arises during on- or cross- crest op-
eration. If one abandons the constraint of isochronous or-
bits, as is inevitable for highly-relativistic beams, there is
much range for creativity in design of the magnet lattice
and the phase-slip profile. However, simplifying concepts
such as rf buckets and phase stability, etc., no longer apply.

A very important feature of fast acceleration is the free-
dom to cross betatron resonances. In a non-scaling Fixed-
Field Alternating Gradient (FFAG) accelerator, the optics
change slowly with energy, crossing resonance tunes, and
the orbit pathlength is parabolic as a function of energy.
Variable optics allow the machine lattice to be built from
linear magnetic elements only with a corresponding large
dynamic aperture. The nonscaling FFAG is of particular
interest because it provides an opportunity to consider the
nature and location of fixed points of a strong nonlinear
oscillator as the model for the longitudinal dynamics.

DIFFERENCE EQUATIONS

On the “central orbit” accelerating cavities are spaced
a distance L0 apart and are driven at angular frequency ω
with peak voltage V . In the ultra-relativistic limit, non-
isochronism results only from path length dependence on
energy ∆L(E). We define T0 = L0/c and ∆T = ∆L/c
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with the speed of light c. Let the iteration index be n. We
introduce a relative time coordinate Tn = tn − nTs where
Ts = 2mπ/ω and m = Integer[ωT0/2π]. In the moving
frame, the energy E and arrival times are

En+1 = En + eV cos(ωTn)
Tn+1 = Tn + ∆T (En+1) + (T0 − Ts) . (1)

In the synchronous case L0 is the only free variable; apart
from the choice of a harmonic number, ω (and hence Ts)
is determined uniquely from L0. In the asynchronous case
both L0 and ω retain the status of free variables.

Realistic equations

Equations (1) are toy equations. They apply either to a
linac of indefinite length, or to the interaction with a single
cavity in a cyclic accelerator. However, the condition of
periodicity in a cyclic accelerator (equipped with a string
of cavities) alloyed with near-sychronism allows for greater
sophistication in the choices for the rf.

Let ωTs = (2m + q)π where m is an integer and q
is a fraction. Let the Nc cavities each have some ini-
tial phasing φn on the first turn. The energy increment is
∝ cos[ωTn + (nqπ + φn)]. If we set φn = −nqπ then the
simple form of equation (1) is recovered. At the end of the
first turn, the beam starts to return through the same cavi-
ties a second time. Maintaining synchronism has two con-
sequences. Firstly, for the continued cancellation between
(Nc + k)qπ and φk it follows that Ncq = 2M with integer
M = 0, 1, 2, . . .. Secondly, if one is to avoid a jumping of
the phase between turns then Modulo[Ncδφ, 2π] ≈ δφ =
ω(T0 − Ts).

In the synchronous case with zero inter-turn phase jumps
these conditions lead to a discrete set of frequencies ω. The
usual condition is to set Ts = T0. Typically the reference
energy does not rise linearly, and the reference phase varies
in a roughly sinusoidal fashion. This approach has the ad-
vantage that phase deviation moduli never exceed π/2 and
negative energy increments are not encountered.

However, it can be advantageous to break the condition
of zero inter-turn phase jump, and to loosen the stricture on
q and φk. In this asynchronous case, each line ω is broad-
ened into a narrow continuum. Careful choice may narrow
the excursions about the crest of the wave and facilitate
a reference orbit for which cos(ωTn+φn) = 1 ∀n . (2)

Best frequency and initial phases

Suppose acceleration is to be accomplished in two turns.
One may fake an exact (2) by (i) setting the fixed radiofre-
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quency to the ideal value for the second turn, and (ii) by
adjusting the initial phases at injection so that cavity phases
are correct during the first-turn passage of the reference
particle. When acceleration extends over more than two
turns one may hope to share the deviations from (2) more
or less equally among the turns by careful choices. This
ambition becomes less achievable, the larger is the number
of turns Nt. “Best frequency and phases strategy” refers
to maximising S =

∑Nt×Nc

n=1 cos[ωT ref
n + φk] with respect

to ω and φk under the assumption that we attempt to force
the reference particle to arrive at cos(φ) = 1. This is ac-
complished in a statistical sense; although many terms are
close to unity others will deviate. Generally, as the number
of turns is increased so the distribution grows until zero or
even negative terms appear in the sum S (i.e. phase devia-
tion moduli exceed π/2).

INFLUENCE OF FIXED POINTS

To what degree equations (1) are useful for acceleration
depends on the nature and location of the sets of first-order
fixed points which are the solutions of En+1 = En and
Tn+1 = Tn. In what follows, we shall describe how the
algebraic form ∆T (E) influences cross-crest acceleration.
Manipulation of ∆T (E) is really a matter for the magnet
lattice designer, so part of the discussion is hypothetical.

Synchronous and asynchronous rf are equally valid.
However, for examples we adopt the synchronous case be-
cause the absence of inter-turn phase-jumps will generate
a simpler and more continuous phase space. Nevertheless,
the influence of the Tn+1 = Tn fixed points is equally im-
portant to the asynchronous case.

Linear path dependence

In the case of a scaling, radial-sector FFAG, orbits are
staggered radially outward as a function of momentum and
the orbital change can be approximately linear with en-
ergy. For linear path dependence ∆T = α(E − Ec),
equations (1) correspond to motion within a stationary r.f.
bucket. Ec is the energy of the central orbit. A beamlet in-
jected at bucket bottom will be accelerated to the bucket top
during one half synchrotron oscillation. The beam twice
crosses the crest of the voltage waveform; and those mo-
ments correspond to the maximal acceleration rate. The
minimum voltage occurs when bucket height is set equal to
the difference of extraction and injection energies.

Quadratic path dependence

The case of quadratic path length dependence on energy
is important since it corresponds to that of the non-scalling
FFAG type accelerator, which is considered for rapid accel-
eration of muons[1, 2, 3]. Figure 1 show the phase space
generated by the model equations y ∝ (E − Ec) and

dy/ds ∝ cos(xπ/2) , dx/ds ∝ y2 − 1 . (3)

There are two elliptic and two hyperbolic fixed points.
There is libration and rotation, as in the linear case, but a

striking new feature of the phase space is a serpentine libra-
tion that flows along y = +2,−2,+2,−2, . . . while x in-
creases without limit. This meander feature, emphasised in
figure 2, can be used to augment the range of acceleration.
A beamlet introduced at (x, y) = (−1,−2) may be later
extracted at to (1, 2). Because there are two Tn+1 = Tn

fixed points, there are two reversals of the phase-slip di-
rection. Thi is an advantage because it allows the beam to
cross the waveform crest three times before the phase slips
to values where the beamlet is decelerated. The width of
the meander varies weakly with the voltage.

Figure 1: Phase space of
quadratic pendulum

Figure 2: Manifold of ser-
pentine libration

Figure 3: Phase space of
cubic pendulum, α = 1

Figure 4: Phase space of
quartic pendulum, α = 1/3

Cubic path dependence

Consider the model equations:

dy/ds ∝ cos(xπ/2) , dx/ds ∝ y(1 − α2y2) . (4)

As the cubic parameter α is increased, the y �= 0 fixed
points come to dominate the motion. For example α = 1 in
figure 3. The acceleration range diminishes but some of the
phase-space paths become almost vertical which facilitates
faster acceleration. Moreover, there are some phase pro-
files which cross the crest four times which implies more
effective use of the accelerating voltage.

Quartic path dependence

Consider the model equations:

dy/ds ∝ cos(xπ/2) , dx/ds ∝ y2(1−α2y2)−1 . (5)

As α approaches � 1/3, the quartic fixed points (i.e.
at large |y|) begin to dominate the phase space motion;
and a bi-serpentine libration emerges with twice as many
manders, as shown in figure 4. The beamlet injected at
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(x, y) = (1,−3.5) is extracted at (−1, 3.5). The phase
profile crosses the crest of the waveform five times, and the
acceleration range is extended to y = ±3.5. Thus four re-
versals of phase-slip direction is advantageous; because it
allows the beamlet to cross the crest five times before the
phase slips to values where deceleration occurs.

From these examples we have seen the general features:
(i) number of crest crossings equal to one plus the order
of the polynomial, and (ii) meanders only occur for even
orders.

PARTICLE TRACKING

As a particular example, we take a non-scaling FFAG of
2 km circumference and path length variation ∆L(E) up
to 50 cm (120◦ of rf phase). The machine has 300 cells
and 200 MHz rf cavities. Particle tracking was completed
both for asynchronous and synchronous rf for acceleration
completed in a number of turns ranging from two to ten.
Figures 5,6 and figs. 7,8 show the beam centroid motion
for the asynchronous and synchronous cases, respectively.

Figure 5: Phase portrait for
2–5 turns acceleration.

Figure 6: Phase portrait for
6–9 turns acceleration.

Figure 7: Phase portrait for
3–6 turns acceleration.

Figure 8: Phase portrait for
7–10 turns acceleration.

Table 1 captures the variation of output emittance with
voltage per turn and number of turns. The table is un-
able to indicate the emittance quality; to what degree the
phase space is distorted, whether there are voids or tails,
etc. However, an indication of relative quality is given in
figures 9,10 and 11,12 for asynchronous and synchronous
rf, respectively.

For five or less turns, the output emittance for the asyn-
chronous scheme is superior. For six and seven turns, the
emittance quality is comparable for the two schemes. For

eight or more turns, the output emittance is superior for the
synchronous rf scheme.

Figure 9: Input emittance Figure 10: Output emittance

Figure 11: Input emittance Figure 12: Output emittance

Table 1: Comparative performance
Turns over volts emittance emittance

# factor GV eV.s [Asynk] eV.s [Synk]
4 1.10 3.850 0.2590 0.3150
5 1.15 3.220 0.5114 0.3520
6 1.15 2.683 0.4701 0.4580
7 1.20 2.400 0.4646 0.4518
8 1.25 2.187 0.1479 0.2962
9 1.30 2.022 0.1806 0.2684

10 1.30 1.820 – 0.1017

CONCLUSION

The “fast regime” in a fixed-field accelerator opens a new
frontier of beam dynamics in which non-linear pathlength
variation with energy and fixed radio-frequency combine to
give a longitudinal phase space that is both useful for accel-
eration and rich in new physics. We have categorized the
motion in terms of its fixed points; and we have developed
a context for the “best frequency and phases” rf strategy
that emphasises the distinction between synchronous and
asynchronous rf. Finally, for the quadratic pathlength de-
pendence in a non-scaling FFAG we have compared the rel-
ative performance, in identical machines, of synchronous
and asynchronous rf schemes.
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