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INTRODUCTION ¢n). The derivation of the equation fé(z,¢) describing
the interaction of the beam with the mode is given in Ref.

i ]. Together with Eq. (1), they constitute a system that
by. thethcoherenltl sgr:gt;rgtron rzd'a“o,f‘ éc??Rt)h V\t/as f?unt escribes nonlinear evolution of the beam with the single
using the so ca’le impedance” [2, 3] that neg €CtR0de of the field. Here we formulate this system of equa-
the shielding effect of the walls and assumes a contlnlﬁ-On without derivation
ous spectrum of radiation. In many cases, the instability is It is convenient to introduce dimensionless variables
limited to relatively long wavelengths where it may be af-

fected by the wall shielding effect [4]. Close to the shielg>’ 2197 Instead of, z and, respectively, where

In Ref. [1] the growth rate of the beam instability driven

ing threshold, one has to take into account that the spec- Nwn,
trum of synchronous modes of radiation is discrete, and the T=pb =gz p=——r70,
instability may be driven by a single mode rather than a
continuous spectrum. and 13

The linear theory of single-mode CSR instability is de- p=c |:Tenbwnan ]
veloped in Refs. [1, 5]. In this paper, we study nonlinear cy(1 = Bgn) ’

regime'of the instability. As in Ref. [1], we assume that th herewy, Y. andeg,, are the frequency, loss factor and
b_unch IS much longer thqn the wavelength of the mOdUIqhe group velocity of the synchronous mode, respectively,
tion and consider a coasting beam model. (wn = cqn), andr. = ¢2/mc2. We introduce the ampli-
tude A(7) such that,
NONLINEAR REGIME OF THE
INSTABILITY £=-T"F A0 el
ENWn,
In Refs. [1, 5] we calculated the growth rate for a _ _ o _

single-mode instability as a function of detunipg- ¢,,, and the dimensionless distribution function
wheregq is the wavenumber of the perturbation apgl is

the wavenumber of theth synchronous mode in a toroidal F((p,7) = on % ;
waveguide. The growth rate is localized in a small vicinity b n
of g, with a maximum ay = gy.. normalized by the conditioff™>_dp [;™ d¢F(¢,p,7) = 1.

When the amplitude of the unstable mode becomes larg
the linear theory is not valid any more and one has t
use the full Vlasov equation for the distribution function
f(z,6,1): OF  OF

fft these variables, the beam dynamics is described by the
?ollowing equation,

8_+p8_C+[A(T)€K+CC}_p:0’ (2
of af e af
= —ned=—+ —E&(2,t)== =0. 1) ) o )
ot dz  ymc 96 and the amplitudet () satisfies the equation
Here z is the longitudinal coordinate measured relative DA(T) ,
to a reference particle moving with the speed of light, 5 — (e7) +iud, 3)

is the energy offset relative to the nominal enety,
d = (F — Ey)/Ep, n is the momentum compaction fac- with
tor, ymc? is the nominal beam energy, addz, t) is the

0 2
longitudinal component of the electric field. The function (e7) = / dp/ dCF(Cp,m)e ™, (4)
[ is normalized so thaf fdzds gives the number of parti- —o0 0
cles in the beam. A E(q — 4n)(1 = Bgn) .

An important approximation that we make in the nonlin-
ear regime is that the evolution of the instability is govemeg:haracteristics
by a single mode with a wavenumbgrOne would expect
that this wavenumber is equalgg@—the mode that has the
maximum growth rate in the linear regime—however, for ¢ dp ”
the sake of generality, we tregtas arbitrary (but close to =P g =[Aln)e” +ecl. 5)

of Eq. (2) are equations of motion for a
single particle:
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Eqg. (2), (3) and Eq. (5) constitute a full system of equaescillations, but includes synchrotron damping and diffu-

tions. These equations have an integral of motion: sion due to quantum fluctuations in synchrotron radiation.
A more detailed study, with account of synchrotron motion,
C=|AP—(p), (6) can be found in Ref. [9].

To include the effects of synchrotron damping and quan-
which reflects conservation of energy—the sum of theum diffusion into the interaction of the wave with the
wave energy and the beam energy is constant during thgam, we need to use the Vlasov-Fokker-Planck equation
interaction. [10]. In our dimensionless variables it has the following

The system of equations (2), (3), and Eq. (5) is encourform
tered in other problems of nonlinear beam-wave interac-

tion, e.g., in the one-dimensional FEL theory [7, 8], with or —l—pa—F + [A(7)e™ +c.c] or
the parameter being equivalent to the Pierce parameter or ¢ op
The solution of the system on a limited time interval can :Fﬁ (AQ(‘)_F +pF>

be obtained by numerical methods. In the numerical ap- dp Ip ’

proach, the beam is represented by a finite nunitfeof
macroparticles, and the avera@€®) is approximated by
the sum(1/M) Ei” e~ over all particles’ coordinates
Ck. The result of such a solution—the absolute valde

of the amplitude of the wave—is shown in Fig. (1). The r— ISR A NWnOSR

amplitude of an initial small perturbation saturates after an o oo

initial exponential growth and exhibits oscillations at fre-

quency of the order of the bounce frequency of particles ilNote that with damping the integral in Eq. (6) is not
the bucket of the excited wave. Fig. 1 agrees with a similagonserved any moresl: (JA|* — (p)) = T'(p) instead of

solution obtained earlier in Ref. [7]. Eq. (6). o _
In order to carry out numerical simulation of the Vlasov-

Fokker-Plank equation, we note that this equation is equiv-
alent to a set of single-particle equations of motion with
damping and an external foregr):

ac _ dp _
dT_p7 dr

whereI" and A are related to the synchrotron radiation
dampingvsg and the rms energy spreadr due to the
guantum fluctuations in the synchrotron radiation:

[A(T)e® +c.c.] —Tp+ w(r).

Al

05 | i wherex(7) is a random function of time with zero aver-
I 1 age valugx) = 0 and the correlation function

(k(T)K(T")) = 2T'A? or—1).

0 20 40 In our simulation, we used a discrete time meslhvith
T the time steps, = ;4.1 — 7; and a finite number of particles
M. On each interval, we first solved the system of the dif-
Figure 1: The dependence of the amplitiidéversusr in ~ ferential equations Egs. (5) and (3) without damping and
the nonlinear regime of the instability. fluctuations. The damping and fluctuations were taken into
account at the end of each step by changing the varjable
for each patrticle:

SYNCHROTRON DAMPING AND Pk — pr — UTspr + /247, TA2E,

QUANTUM DIFFUSION , , o ,
where¢ is a random number uniformly distributed in the

Contrary to the FEL theory, where it usually suffices torange[—1/2,1/2]. This algorithm was tested on the case
track the solution on several gain lengths only, for a beawithout the wave A = 0, and also for the case of an ex-
in the storage ring we may be interested in time compardernal wave with constant amplitude = const, when the
ble to the synchrotron damping time. The analysis in thi¥/lasov-Fokker-Planck equation has analytical solutions. In
case has to include the synchrotron damping and diffusidooth cases we found a good agreement between the numer-
due to quantum fluctuations effects. One of the difficultieécal and analytical solutions.
of such analysis is that the damping time typically is larger The simulations were carried out for the parameters
than the synchrotron oscillation period in the damping rightlose to that of ALSy: = 3.2- 107 s, w,, = 1.0 - 10'?
so that one has also take into account synchrotron oscilla=!, A = 0.032. However, to speed up the tracking, we
tions of a particle in the bunch. Here, however, we will conincreased the parametéfrom the ALS value2.0 10 ¢ to
sider an idealized formulation which neglects synchrotro.0 10~2. We expect that such a rescalinglbficcelerates
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the manifestation of the synchrotron damping effects withef time. For the time interval small compared with the
out qualitatively changing the solution. Typically we useddamping timer < 50, results of tracking reproduce Fig. 1.
from 200 to 800 particles in the simulation. For larger time intervals; >> 50, the amplitude A| keeps
The results of the tracking for ~ 1000 (correspond- growing, and the beam comes to a quasi equilibrium, with
ing to approximately 20 damping times) are shown in Figa slowly changing values gfp) and Ap,.,s. Note also a
2 and Fig. 3. Fig. 2 shows the amplitudé(r)|, and relatively small value ofAp, s, which means that particles
of the beam are well localized in thespace.
The numerical results shown in Figs. 2 and 3 give us an
indication of an analytical solution to the problem in the
limit of large 7. In this solution we assume that

A(r) = ido(r)e O, ™

where the functiondy(7) and frequency(r) are slow
functions of time. Particles are trapped by the wave
¢(¢=¥7) and drift with the ratel¢ /dr = v. It can be shown
[6] that the amplituded o (7) grows in time due to damping

0 250 500 750 iOOO with the rate
dAo 2

T & = ir Ay ?
Figure 2: The absolute value of the amplitydgr)| as a Since this equation determines asymptotic behaviad of
function of r. Black curve shows the result of simulation, in the limit 7 — oo, the initial condition for it is not de-
red curve—analytical solution of Eq. (8). fined. For the purpose of comparison with the numerical
solution, we considered an initial conditioh(ry) = A.,
with A, as a fitting parameter. The result of integration
of Eq. (8) with A(100) = 2.5 is shown in Fig. 2 in red
color, in good agreement with the numerical solution. It is
straightforward to show that for largeit follows from Eq.
(8) thatAy o< 7'/3. The averaged momentum of the parti-
cles(p) in this model can also be found ans is shown as a
red line in Fig. 3a.
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Figure 3: Numerical simulation of nonlinear regime of the
instability: a)—the average momentuip), b)—the rms
momentum spreadp,s. The red line shows the the result
of the analytical model.
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