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Abstract 
The stability criterion for the longitudinal microwave 

instability in bunched lepton beams is derived using the 
mode-coupling formalism and taking into account the 
potential-well distortion. The new formula yields an 
intensity threshold which can be higher than the one 
given by the Keil-Schnell-Boussard approximation by a 
large factor. This result may explain why the classical 
instability threshold has been exceeded in some lepton 
machines. 

1  INTRODUCTION 
The longitudinal microwave instability for coasting 

beams is well understood [1-4]. It leads to a stability 
diagram, which is a graphical representation of the 
solution of the dispersion relation depicting curves of 
constant growth rates, and especially a threshold contour 
in the complex plane of the driving impedance. When the 
real part of the driving impedance is much greater than 
the modulus of the imaginary part, a simple 
approximation, known as the Keil-Schnell (or circle) 
stability criterion, may be used to estimate the threshold 
curve [3]. For bunched beams, it has been proposed by 
Boussard [5] to use the coasting-beam formalism with 
local values of bunch current and momentum spread. This 
approximation was expected to be valid in the case of 
instability rise-times shorter than the synchrotron period, 
and wavelengths of the driving wake field much shorter 
than the bunch length. This empirical rule is widely used 
for estimations of the tolerable impedances in the design 
of new accelerators. A first approach to explain this 
instability, without coasting-beam approximations, has 
been suggested by Sacherer through Longitudinal Mode-
Coupling (LMC) [6]. The equivalence between LMC and 
microwave instabilities has been pointed out by 
Sacherer [6] and Laclare [7] in the case of broad-band 
driving resonator impedances, neglecting the Potential-
Well Distortion (PWD). The complete theory describing 
the microwave instability for bunched beams is still under 
development [4,8].  

It has been shown in Refs. [9,10], using the mode-
coupling formalism for the case of proton bunch with a 
parabolic line density interacting with a broad-band 
resonator impedance, that a new stability criterion can be 
derived taking into account the PWD due to both space-

charge and resonator impedances. This new formula 
reveals in particular that it is better to operate the machine 
below transition (as already found in Ref. [11]). It also 
predicts a stability area below transition even in the 
presence of large space-charge impedances, without 
coasting-beam considerations of stability diagrams. 

The case of a lepton bunch with a Gaussian amplitude 
density is discussed in this paper. Space charge is 
negligible in this case and the machine is operating above 
transition. 

2  THEORY 
Applying Sacherer�s formula for LMC between modes 

m and m+1 yields the following intensity threshold 
condition [9] 
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Here, 0feNI bb =  is the current in one bunch with bN  the 
number of protons in the bunch, e the elementary charge, 
and π2/00 Ω=f  the revolution frequency, h  is the 
harmonic number, TV�  is the total (effective) peak voltage 
taking into account the PWD (the peak RF voltage is 
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RFV� ), 0fB bτ=  is the bunching factor with bτ  the total 
bunch length (in seconds) taking into account the PWD 
(the unperturbed total bunch length is 0bτ ),   sφ  is the RF 
phase of the synchronous particle ( 0cos <sφ  above 
transition) taking into account the PWD (the unperturbed 
synchronous phase is 0sφ ), pZ BB

l /  is the peak value of 
the Broad-Band (BB) resonator impedance, 

...,1,0,1...,−=m  is the longitudinal coherent bunch mode 
number, 1−=j  is the imaginary unit, lZ  is the 
longitudinal coupling impedance, s

l
p mp ωω +Ω= 0  with 

∞+≤≤−∞ p , where ss fπω 2=  is the synchrotron 
angular frequency taking into account the PWD (the 
unperturbed synchrotron angular frequency is 

00 2 ss fπω = ), and nmh ,  describes the cross-power 
densities of the mth and nth line-density modes. The 
broad-band resonator impedance is defined by 
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where sR  is the shunt impedance (in Ω), 1=rQ  is the 
quality factor and rr fπω 2=  is the resonance angular 
frequency. 

Considering a lepton bunch with Gaussian amplitude 
density, the following relations are obtained when PWD 
is taken into account [7] 

 ( ) ,8�

2
�

8

20









−

= beg
b

τ
τ

τπ
τ  (5) 

( )[ ] ( ) ,Re
cos�

2
0

0
0 ∑

∞+=

∞−=

×+=
p

p
l

sRF

b
ss ppZ

V
I

σ
φ

π
φφ

  (6) 

 ( ) ( ) ( ) ,����
�

0�
0000 ∫

∞+=

=

Ω=
τ

τ

ττττσ dgpJp  (7) 

( ) ( )

( )
,

cos�
6

cos�
2

Im,
3

0
2

0
2

0
2
0

2
0

2
1

eff

l

sRF

b

p

p

l

sRF

b

s

ss

p
pZ

j
BVh

I

pp
p

pZ
j

Vh
I









−=

−=
−

=∆ ∑
∞+=

∞−=

φπ

σ
φ

π
ω
ωω

  (8) 

 ( ) ( ) ( ) ,
3 0

2
33

Im,

kk
k

kZB
p

pZ k

k

l

eff

l σπ ∑
∞+=

∞−=

=






  (9) 

 ,�
�

2
0

2
1

RF

T
ss V

V
×= ωω  (10) 

 ,
3

0
0 








∆=∆

B
B  (11) 

 ,
cos
cos

0

3

0

0

0

∆+







=×








B
B

B
B

s

s

φ
φ

 (12) 

where 0J  is the Bessel function of first kind and 0th 
order, and ( )τ�0g  is the stationary distribution of the 
synchrotron oscillation amplitude τ� . The stability 
criterion of Eq. (1) can then be re-written  
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where 02 / BBF =  is a factor found by equating the 
intensity at threshold of Eq. (13) to the one due to PWD 
(see Eq. (8)), which is given by 
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Note that for sufficiently long bunches ( rb f/20 >>τ ), the 
factor 1F  is independent of the bunch length and is given 
by 6.01 ≈F . In this case, the factor 2F  is given 
analytically by Eq. (14). This is not the case for shorter 
bunches, where Eq. (14) has to be solved numerically. 

Neglecting the synchronous phase shift, the stability 
criterion for the longitudinal microwave instability can be 
written  
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where KSB
pI 0  is the initial (low-intensity) peak intensity 

threshold from the Keil-Schnell-Boussard criterion for 
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Gaussian bunches [12], E  is the beam energy, 2−= trp γα  
is the momentum compaction factor, and ( )FWHH,00/ pp∆  
is the initial (low-intensity) relative momentum spread 
(full width at half height). The factor F, which is given by 
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is solved numerically and represented in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Plot of the factor F vs. 0brf τ . 

It is seen from Fig. 1 that for long (compared to the 
inverse of the resonance frequency of the impedance) 
bunches, the intensity threshold is ~2 times larger than 
from the Keil-Schnell-Boussard criterion. Furthermore, 
when the bunch length gets smaller, the threshold 
intensity increases, and if 75.00 ≤brf τ  there is no 
instability anymore (with this model�). 

3  MEASUREMENTS 
Microwave instability measurements made in the 

CERN SPS in 1993 for long proton bunches produced a 
value for the longitudinal impedance Ω≈ 20/ pZl , 
with 1≈rQ  and ]GHz6.13.1[ −∈rf , using the Keil-
Schnell-Boussard criterion [13]. To explain the absence 
of longitudinal microwave instability for short lepton 
bunches at high energies, i.e. when cm5≤zσ , an 
effective longitudinal impedance 5 times lower than the 
long bunch value was needed, which was not understood. 

Applying the new criterion for the case of the short 
bunch with cm5=zσ , i.e. 10 ≈brf τ , one sees that a 
factor of ~5 is predicted, in perfect agreement with the 
above (non) observations. 

4  CONCLUSION 
A new stability criterion for the longitudinal 

microwave instability of lepton bunches is given. For a 
sufficiently long bunch, the intensity threshold is found to 
be ~2 times larger than from the Keil-Schnell-Boussard 

criterion. When the bunch length gets smaller, the 
threshold intensity increases. It is ~5 times larger than 
from the Keil-Schnell-Boussard criterion when 

10 ≈brf τ , which is in perfect agreement with the (non) 
observations made in Ref. [13]. The new stability 
criterion may explain why the classical (Keil-Schnell-
Boussard) instability threshold can be exceeded in lepton 
machines. 
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