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Abstract

In this paper we perform a comprehensive analysis of the
transport of periodically focused particle beams within the
new regions of stability recently found [R. Pakter and F. B.
Rizzato, Phys. Rev. Lett.,87, 044801 (2001)] for vacuum
phase advances well above the 90 degrees threshold. In
particular, we investigate the stability as a function of the
relevant parameters of the system, such as beam intensity
and focusing field profile. Self-consistent numerical simu-
lations are used to verify the findings.

INTRODUCTION

The physics of intense beams in periodically focusing
systems is an active area of theoretical and experimental
research where one looks for external field configurations
capable of confining high-current, low emittance ion or
electron beams [1, 2]. The area is crucial for the develop-
ment of several advanced particle accelerator applications,
as well as applications in basic science.

A key aspect of periodically focused beams is their equi-
librium and stability properties. Up until recently, it was
believed that only one matched solution – equilibrium so-
lution where the beam transverse radius oscilates with the
same periodicity of the focusing field – is present for a
given set of beam and focusing parameters and that this
solution becomes unstable as the focusing field intensity
is raised above a certain threshold [1, 2]. The threshold
corresponds to a vacuum-phase advance of 90 degrees. Re-
cently, however, it was shown that new regions of stabil-
ity that lead to much tighter beam confinement are present
for vacuum-phase advances well above 90 degrees [3, 4].
In fact, the scenario as the focusing field increases is the
appearance of successive regions of stability which are in-
terrupted by gaps where either the matched solutions are
unstable or simply do not exist. The dynamical mechanism
responsible for the onset of the gaps is analyzed in Ref. [5].

In this paper, we perform a detailed investigation of
beam envelope stability as a function of the relevant pa-
rameters of the system, such as beam intensity and focusing
field profile.

THE MODEL

In the paraxial approximation the envelope equation that
dictates the envelope evolution of a particle beam propagat-
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ing with average axial velocityβbcêz through a periodic
solenoidal focusing magnetic field is given, in its dimen-
sionless form, by

d2rb

ds2
+ κz(s)rb −

K

rb
− 1

r3
b

= 0. (1)

In Eq. (1),s = z/S = βbct/S is the dimensionless coordi-
nate along the beam axis,rb(s) = rb,dimensional/(Sε)1/2

is the normalized beam envelope radius andK =
2q2NbS/εγ3

b β2
b mc2 is the normalized perveance of the

beam wherec is the speed of light invacuo, S is the pe-
riodicity length of the magnetic focusing field,ε is the
unnormalized emittance of the beam,Nb is the number
of particles per unit axial length, andq, m and γb =
(1 − β2

b )−1/2 are, respectively, the charge, mass and rel-
ativistic factor of the beam particles. The focusing field is
characterized by the normalized focusing strength param-
eterκz(s + 1) = κz(s) related to the magnetic field by
κz(s) = q2B2

z(s)S2/4γ2
b β2

b m2c4.
In order to investigate the role of the focusing field pro-

file on beam transport, we consider a focusing field param-
eter of the form

κz(s) = σ2
0

[
1 + cos θ(s)

N

]
, (2)

with the phase function given by

θ(s) = π

{
tan−1 [∆(s̄ + η/2)] + tan−1 [∆(s̄ − η/2)]
tan−1 [∆(1 + η)/2] + tan−1 [∆(1 − η)/2]

}
,

(3)
whereσ0 = [

∫ 1

0
κz(s)ds]1/2 is the vacuum phase advance

in the smooth-beam approximation, which is proportional
to the rms focusing field,N = 1 +

∫ 1

0
cos θ(s)ds is used

to normalize the function,̄s = mod(s + 1/2, 1) − 1/2 is
periodic in s and lies always in the range−1/2 ≥ s̄ ≥
1/2, ∆ > 0 is the focusing field profile paramenter, and
0 < η ≤ 1 is the filling factor. The functionκ(s) in
Eq. (2) is constructed such that for small∆ it resembles
a smooth sinusoidal function of period 1 ins, while for in-
creasing∆ it starts developing sharper edges, eventually
turning into a discontinuous periodic step function of fill-
ing factorη for infinite ∆. In fact, in the limit∆ � 1 the
arguments of the inverse tangent functions in Eq. (3) are
small, allowing the approximationtan−1(x) = x which
leads toθ(s) = 2πs̄ and to the sinusoidal focusing field
profile κz(s) = σ2

0 [1 + cos(2πs)], studied in Refs. [3, 4].
Note that in this limit,η plays no role in focusing field
profile. On the other hand, when∆ � 1 the inverse
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tangent functions present an abrupt change from−π/2 to
π/2 as their arguments change sign, allowing the approx-
imation tan−1(x) = (π/2) sign(x) which leads to a dis-
continuous phase function withθ(s̄ < −η/2) = −π,
θ(−η/2 < s̄ < η/2) = 0 andθ(s̄ > η/2) = π, and to
a step-function focusing field lattice with filling factorη.
Note that for all∆, the denominator in Eq. (3) guarantees
that the phase function completes a full cycle fromθ = −π
to θ = π as s̄ goes from−1/2 to 1/2, and consequently
κz(s) is always continuous at the lattice boundaries.

BEAM STABILITY ANALYSIS

In this section, we analyse the stability of beams prop-
agating through the focusing field given in Eq. (2), as the
relavant parameters of the system are varied, paying spe-
cial attention to the new regions of stability. To perform
the analysis we use a Newton-Raphson method to search
for and verify the stability of envelope matched solutions
obtained from Eq. (1). The stability is determined with
the aid of the stability indexα defined asα = cos(kfix),
wherekfix is the wavenumber of small linear oscillations
around the periodic trajectory, obtained with the Newton-
Raphson method. For stable orbits wherekfix is a real
number,|α| < 1; if α crosses the lower boundaryα = −1
it undergoes a period doubling bifurcation loosing stability,
and if the orbit crosses the upper boundaryα = +1 the or-
bit undergoes an inverse tangent bifurcation with a previous
unstable fixed point.

Generally, the bifurcation scenario for the matched so-
lutions as one increases the vacuum phase advance is as
follows; detailed description is found in Refs. [3, 4]. Sta-
ble matched solutions are born in the phase space with
α = +1. For the original matched solution, this occurs
exactly atσ0 = 0o, whereas for the new regions of sta-
bility it occurs at differentσ0 > 180o. As the vacuum
phase advance is increased, the respectiveα moves towards
α = −1. Whenα = −1 is reached, the matched solution
suffers a period doubling bifurcation and becomes unsta-
ble. We define as a region of stability, the range ofσ0 that
goes from the onset of the corresponding stable matched
solution with α = +1 until it bifurcates withα = −1.
As a matter of fact, before eventually dissapearing perma-
nently from the phase space, the matched solutions cross
back theα = −1 line and recover their stability asσ0

is further increased. However, as shown in Ref. [4] the
matched solution is not useful for beam confinement af-
ter its re-stabilization because beam emitance growth was
observed in self-consistent numerical simulations for these
parameter regions.

To determine the role of a particular parameter on the
beam transport stability we construct parametric space
plots ofσ0 as a funtion of the parameter displaying the lo-
cations of the different regions of stability. The plots are
obtained by using the Newton-Raphson method to numeri-
cally determine the curves in the parameter space for which
a bifurcation withα = ±1 occurs.

Dependence on the Beam Intensity

In Fig. 1 we analyze the dependence of the beam sta-
biliy on the beam intensity by ploting the parameter space
plot of K × σ0, for a sinusoidal field with∆ � 1. The
white regions in the figure correspond to parameter values
for which at least one stable matched solution with|α| < 1
exists. The gray regions correspond to the existence of a
single matched solution withα < −1 which is unstable
because a period doubling bifurcation has taken place. The
black regions correspond to the gaps where no matched so-
lution is found.
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Figure 1:K × σ0 parameter space plot: stable regions are
the white regions

Figure 1 shows that the perveance plays a tricky role on
the characteristics of the new regions of stability. In par-
ticular, the size of the instability gap caused by the period
doubling bifurcation (gray regions) tends to increase with
increasingK. On the other hand, the size of the gap where
matched solutions are absent (black regions) tends to de-
crease asK and/orn increases. Therefore, there is a par-
ticular values ofK (aroundK = 7.5 for the specific si-
nusoidal focusing field used in Fig. 1) for which the new
regions of stability are wider in the parameter space. An-
other interesting feature is that the onset of the new sta-
ble matched solutions, which are the bifurcations leading
to the lines that limit the black regions to the right, is essen-
tially independent of the perveanceK. This can be under-
stood based on the fact that the new matched solutions enter
the phase-space as solutions that oscillate fromrb = 0 to
rb → ∞ [4]. Because in this case the particles of the beam
spend most of the time far away from each other, space
charge effects introduced byK are unimportant.

Dependence on the Focusing Field Profile

Recalling from the model,∆ determines the overall
shape of the focusing field: as∆ is increased from small
values∆ � 1, the focusing field profile continuously goes
from a smooth sinusoidal function to a sharp-edged step-
function as∆ → ∞. In Fig. 2, it is shown the parameter
space plot ofσ0 × ∆, for a small filling factor η = 0.2,
and a beam intensity corresponding toK = 5.0. The
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black regions correspond to stable regions; the region be-
low σ0 ≈ 100o is the original region of stability (ORS) and
the other one is the second region of stability (SRS). Here,
we consider as stable regions only those preceeding the re-
spective period doublings. Higher order new regions of sta-
bility were also investigated and the results are qualitetively
the same as for the SRS.
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Figure 2:σ0 × ∆ parameter space plot: stable regions are
the black regions.

It is seen in Fig. 2 that the focusing field profile plays an
important role in the beam stability and as∆ increases two
effects are clearly seen regarding the SRS. (i) First, there
is an increase in the vacuum phase advance necessary to
reach the SRS. Sinceσ0 is proportional to the rms focus-
ing field, this reveals that the peak magnetic field has to be
raised considerably as the profile becomes more localized
with small η not only because its average has to increase,
but also because the spatial region where the field is ef-
fectively applied is smaller. In the case depicted in Fig.
2(b), for instance, taking into account thatσ0 for the SRS
increases roughly 50% as∆ goes from10−1 to 104, the
increase in the peak magnetic field has to be about 3.75
times. However, if one now looks at the minimum value at-
tained by the matched beam envelope as it oscilates in the
focusing lattice one notes that it is noticeably reduced as the
peak magnetic field for the SRS increases with∆. (ii) Sec-
ond, the SRS becomes much narrower as∆ is increased.
The range in vacuum phase advance for which the SRS ex-
ists goes from 80o to 25o as∆ is increased. Not only this
reveals that a more accurate field intensity tuning is nec-
essary as the focusing channel becomes more localized for
η = 0.2, but it also suggests that more nonlinear resonances
may appear in the phase space because the variation ofα
with σ0, and hence the range of orbital frequencies in the
phase space, is larger. The resonances may affect the beam
transport nonlinear stability.

Other values of the filling factorη were also investigated
and the overall conclusion is thatη = 0.5 may be seen as a
midpoint in the sense that at this value the new regions of
stability are not greatly affected by the variations in the fo-
cusing field profile parameter. This is probably connected
to the fact that exactly atη = 0.5 the sinusoidal (∆ → 0)

and the step-function (∆ → ∞) limits of the focusing pro-
file present the same normN = 1 +

∫ 1

0
cos θ(s)ds = 1.0,

such that the peak magnetic field is the same in both cases.
For η > 0.5 it was found that the new regions tend to in-
crease in size as∆ is increased from 0, getting closer to the
ORS. In fact, one may eventually find parameter sets for
which two stable matched solutions coexist in the phase
space. On the other hand, as shown in detail forη = 0.2,
whenη < 0.5 the new regions become narrower and occur
at higher vacuum phase advances as∆ is increased. In par-
ticular, for the thin lens regime whereη → 0, ∆ → ∞, and
κz(s) tends to a series of Dirac-delta functions, the onset of
the new regions of stability only occur atσ0 → ∞, which
in practice means that these regions are absent. However,
this limit is not realistic due to the restrictions imposed by
Maxwell’s equations on the focusing field profile.

CONCLUSIONS

The new regions of stability found for vacuum phase ad-
vance well above 90 degrees are sensitive to variations in
the relevant parameters of the system, specially to varia-
tions in the shape of the focusing field profile. However,
they are always present and are robust against parameter
changes.
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