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Abstract ing with average axial velocity,cé, through a periodic
hséolenoidal focusing magnetic field is given, in its dimen-

In this paper we perform a comprehensive analysis of t
pap b P y glonless form, by

transport of periodically focused particle beams within th

new regions of stability recently found [R. Pakter and F. B. d2r, K 1
Rizzato, Phys. Rev. Lett87, 044801 (2001)] for vacuum 2 T ra(s)re — Pl 0. (1)
b

phase advances well above the 90 degrees threshold. In
particular, we investigate the stability as a function of then Eq. (1),s = 2/5 = §,ct/S is the dimensionless coordi-

relevant parameters of the system, such as beam intensifite along the beam axis,(s) = 7y gimensionat/(S€)/2
and focusing field profile. Self-consistent numerical Simus the normalized beam envelobe radius ahd —

lations are used to verify the findings. 2¢°Ny,S/evi B¢mc? is the normalized perveance of the
beam where: is the speed of light ivacuo, S is the pe-
INTRODUCTION riodicity length of the magnetic focusing field, is the

. . . - ._unnormalized emittance of the bealN, is the number
The physics of intense beams in periodically focusm%f particles per unit axial length, ang m and ~
il b ==

systems is an active area of theoretical and experimental o\ —1/2 :

. . : - Bi) are, respectively, the charge, mass and rel-

research where one looks for external field configurations,. . ' . RPN
ativistic factor of the beam particles. The focusing field is

capable of confining high-current, low emittance ion or . ) .
. . characterized by the normalized focusing strength param-

electron beams [1, 2]. The area is crucial for the develop- -
. o leterk, (s + 1) = k. (s) related to the magnetic field by

ment of several advanced particle accelerator application

S, 22 2 A2 32,2 A
o . o R2(s) = q°BZ(s)S?/4~; Bym>c.
as AN Eg aassagglt'%?t'%?;:;(gf'?;ﬂgg;eﬁeams is their edui- In order to investigate the role of the focusing field pro-
_AAKeyasp P vy : €U e on beam transport, we consider a focusing field param-
librium and stability properties. Up until recently, it was

believed that only one matched solution — equilibrium Soc_eter of the form

lution where the beam transverse radius oscilates with the o [1+cosf(s)

same periodicity of the focusing field — is present for a Kz(s) = op [T] ’ @)
given set of beam and focusing parameters and that this

solution becomes unstable as the focusing field intensityith the phase function given by

is raised above a certain threshold [1, 2]. The threshold A A
corresponds to a vacuum-phase advance of 90 degrees. - { tan” " [A(S +1/2)] + tan”" [A(5 — 1/2)] }
cently, however, it was shown that new regions of stabil- tan~! [A(1 47)/2] +tan~ " [A(1 —1n)/2] ] |
ity that lead to much tighter beam confinement are present ©

for vacuum-phase advances well above 90 degrees [3, ¥{h€réco = [fol Kz (s)ds]'/? is the vacuum phase advance
In fact, the scenario as the focusing field increases is tfi the smooth-beam apprOX|mat|on,1 which is proportional
appearance of successive regions of stability which are if the rms focusing fieldV = 1 + [ cosf(s)ds is used
terrupted by gaps where either the matched solutions di@normalize the functions = mod(s + 1/2,1) — 1/2'is
unstable or simply do not exist. The dynamical mechanisieriodic ins and lies always in the range1/2 > 5 >
responsible for the onset of the gaps is analyzed in Ref. [5]/2, A > 0 is the focusing field profile paramenter, and
In this paper, we perform a detailed investigation of < 7 < 1 is the filling factor. The function(s) in
beam envelope stability as a function of the relevant p&d. (2) is constructed such that for smallit resembles

rameters of the system, such as beam intensity and focusiagmooth sinusoidal function of period Linwhile for in-
field profile. creasingA it starts developing sharper edges, eventually

turning into a discontinuous periodic step function of fill-
THE MODEL ing factorn for infinite A. In fact, in the limitA < 1 the
arguments of the inverse tangent functions in Eq. (3) are
In the paraxial approximation the envelope equation thamall, allowing the approximatiotan—!(x) = z which
dictates the envelope evolution of a particle beam propagdéads tof(s) = 275 and to the sinusoidal focusing field

“Work supported by CNPq and CAPES, Brazil profile . (s) = og[1 + cos(2ms)], studied in Refs. [3, 4].

T pakter@if.ufrgs.br. The author would like to thank the partial supporNOte that in this limit,n plays no role in focusi_ng field
from the PAC03 Organizing Committee. profile. On the other hand, wheA > 1 the inverse
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tangent functions present an abrupt change from2 to  Dependence on the Beam Intensity
/2 as their arguments change sign, allowing the approx-
imation tan—!(x) = (7/2)sign(z) which leads to a dis-
continuous phase function with(s < —n/2) = —m,

In Fig. 1 we analyze the dependence of the beam sta-
biliy on the beam intensity by ploting the parameter space
a _ - N - plot of K x oy, for a sinusoidal field withA < 1. The

0(—n/2 < 5 <n/2) = 0andf(s > n/2) = =, and to white regions in the figure correspond to parameter values

a step-function focusing field lattice with filling facter . . .
Note that for allA, the denominator in Eqg. (3) guaranteesfOr which at least one stable matched solution with< 1

that the phase function completes a full cycle from —r exists. The gray regions correspond to the existence of a

_ single matched solution with < —1 which is unstable
to # = 7 ass goes from—1/2 to 1/2, and consequently ; : . .
. . . . because a period doubling bifurcation has taken place. The
k. (s) is always continuous at the lattice boundaries.

black regions correspond to the gaps where no matched so-
lution is found.
BEAM STABILITY ANALYSIS

In this section, we analyse the stability of beams prop- 20.0
agating through the focusing field given in Eq. (2), as the
relavant parameters of the system are varied, paying spe- 15.01 -
cial attention to the new regions of stability. To perform
the analysis we use a Newton-Raphson method to search K1o.0] -
for and verify the stability of envelope matched solutions
obtained from Eq. (1). The stability is determined with 5.0 -
the aid of the stability index: defined asy = cos(ky¢iz),
whereky;, is the wavenumber of small linear oscillations 0.0 ‘ ‘

T
0 90 180 270 360 450 540

around the periodic trajectory, obtained with the Newton- o, (degrees)

Raphson method. For stable orbits whérg, is a real

number,|a| < 1; if a crosses the lower boundaty= —1

it undergoes a period doubling bifurcation loosing stabilityFigure 1: K x o, parameter space plot: stable regions are
and if the orbit crosses the upper boundary +1 the or-  the white regions

bit undergoes an inverse tangent bifurcation with a previous

unstable fixed point. _ Figure 1 shows that the perveance plays a tricky role on
Generally, the bifurcation scenario for the matched SQne characteristics of the new regions of stability. In par-

lutions as one increases the vacuum phase advance is;g§jar, the size of the instability gap caused by the period
follows; detailed description is found in Refs. [3, 4]. Sta-goupling bifurcation (gray regions) tends to increase with
ble matched solutions are born in the phase space Wighcreasingk. On the other hand, the size of the gap where
a = +1. For the original matched solution, this occursnatched solutions are absent (black regions) tends to de-

exactly atop = 0°, whereas for theonew regions of sta-crease age and/orn increases. Therefore, there is a par-
bility it occurs at differents, > 180°. As the vacuum ticylar values ofK (aroundkK = 7.5 for the specific si-

phase advance is increased, the respeativieves towards nspjdal focusing field used in Fig. 1) for which the new

a = —1. Whena = —1is reached, the matched solutionregions of stability are wider in the parameter space. An-
suffers a period doubling bifurcation and becomes unst@her interesting feature is that the onset of the new sta-
ble. We define as a region of stability, the rang@ethat  pje matched solutions, which are the bifurcations leading
goes from the onset of the corresponding stable matchgglihe Jines that limit the black regions to the right, is essen-
solution withaw = +1 until it bifurcates witha = —1.  a|ly independent of the perveandé This can be under-

As a matter of fact, before eventually dissapearing permaood based on the fact that the new matched solutions enter
nently from the phase space, the matched solutions Crag phase-space as solutions that oscillate from: 0 to

back thea = —1 line and recover their stability as ., _, o [4]. Because in this case the particles of the beam

is further increased. However, as shown in Ref. [4] thgnend most of the time far away from each other, space
matched solution is not useful for beam confinement at":harge effects introduced Wy are unimportant.

ter its re-stabilization because beam emitance growth was
observed in self-consistent numerical simulations for the . . .
parameter regions. ?5ependence on the Focusing Field Profile

To determine the role of a particular parameter on the Recalling from the modelA determines the overall
beam transport stability we construct parametric spachape of the focusing field: a8 is increased from small
plots of oy as a funtion of the parameter displaying the lovaluesA <« 1, the focusing field profile continuously goes
cations of the different regions of stability. The plots ardrom a smooth sinusoidal function to a sharp-edged step-
obtained by using the Newton-Raphson method to numeffunction asA — oco. In Fig. 2, it is shown the parameter
cally determine the curves in the parameter space for whidpace plot otrg x A, for a small filling factor n = 0.2,
a bifurcation withae = 41 occurs. and a beam intensity corresponding &0 = 5.0. The
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black regions correspond to stable regions; the region band the step-function’Y — oo) limits of the focusing pro-

low o¢ =~ 100° is the original region of stability (ORS) and file present the same nortd = 1 + fol cosf(s)ds = 1.0,

the other one is the second region of stability (SRS). Herguch that the peak magnetic field is the same in both cases.
we consider as stable regions only those preceeding the For > 0.5 it was found that the new regions tend to in-
spective period doublings. Higher order new regions of st@rease in size aA is increased from 0, getting closer to the
bility were also investigated and the results are qualitetivelpRS. In fact, one may eventually find parameter sets for
the same as for the SRS. which two stable matched solutions coexist in the phase
space. On the other hand, as shown in detailfer 0.2,
whenn < 0.5 the new regions become narrower and occur
at higher vacuum phase advancesgas increased. In par-
ticular, for the thin lens regime where— 0, A — oo, and

400.0 1 k(s) tends to a series of Dirac-delta functions, the onset of
the new regions of stability only occur @ — oo, which

in practice means that these regions are absent. However,
200.0 1 this limit is not realistic due to the restrictions imposed by
Maxwell’s equations on the focusing field profile.

500.0

300.0

100.0

0.0 CONCLUSIONS

10 00 10 20 30 40
log A The new regions of stability found for vacuum phase ad-
vance well above 90 degrees are sensitive to variations in
Figure 2:0¢ x A parameter space plot: stable regions arthe relevant parameters of the system, specially to varia-
the black regions. tions in the shape of the focusing field profile. However,
they are always present and are robust against parameter

Itis seen in Fig. 2 that the focusing field profile plays arfhanges.
important role in the beam stability and Asincreases two
effects are clearly seen regarding the SRS. (i) First, there REFERENCES
is an increase in Fhe vz?lcuum phf':lse advance necessan{lﬁol. Hofmann, L. J. Laslett, L. Smith, and |. Haber, Part. Accel.,
reach the SRS. Sines, is proportional to the rms focus- * * 13 145 (1983).
|rr;g field, th|§ reveals that the pe_ak magnetic field has tq i% C. Chen and R. C. Davidson, Phys. Rev. Lef2, 2195
ised considerably as the profile becomes more localiz i
. ; . (1994); Phys. Rev. E49, 5679 (1994).
with small n not only because its average has to increase, _
but also because the spatial region where the field is dfl R- Pakter and F.B. Rizzato, Phys. Rev. Le7, 044801
fectively applied is smaller. In the case depicted in Fig. (2001).
2(b), for instance, taking into account thaf for the SRS [4] R. Pakter and F.B. Rizzato, Phys. Rev, 056503 (2002).
increases roughly 50% as goes from10~! to 10%, the [5] F.B. Rizzato and R. Pakter, Phys. Rev. Le89, 184102
increase in the peak magnetic field has to be about 3.75 (2002).
times. However, if one now looks at the minimum value at-
tained by the matched beam envelope as it oscilates in the
focusing lattice one notes that it is noticeably reduced as the
peak magnetic field for the SRS increases with(ii) Sec-
ond, the SRS becomes much narrowerAas increased.
The range in vacuum phase advance for which the SRS ex-
ists goes from 80to 25 asA is increased. Not only this
reveals that a more accurate field intensity tuning is nec-
essary as the focusing channel becomes more localized for
n = 0.2, but it also suggests that more nonlinear resonances
may appear in the phase space because the variatian of
with oy, and hence the range of orbital frequencies in the
phase space, is larger. The resonances may affect the beam
transport nonlinear stability.
Other values of the filling factay were also investigated
and the overall conclusion is that= 0.5 may be seen as a
midpoint in the sense that at this value the new regions of
stability are not greatly affected by the variations in the fo-
cusing field profile parameter. This is probably connected
to the fact that exactly aj = 0.5 the sinusoidalfA — 0)
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