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Abstract

We present Model-Independent Analysis (MIA)-based
methods for measuring lattice properties of a storage ring
such as phase advance, beta function, chromaticity, and
tune shift with amplitude. Using beam position histories of
excited betatron oscillations that are simultaneously mea-
sured at a large number of beam position monitors (BPMs),
the spatial-temporal modes of betatron oscillation can be
extracted with MIA-mode analysis. The resulting spatial
vectors are used to determine linear phase advance and
beta function, and the temporal vectors are used to deter-
mine nonlinear chromaticity and tune shift with amplitude.
Measurements done at the Advanced Photon Source are re-
ported.

INTRODUCTION

Assuming weak coupling and nonlinearity, the betatron
oscillation of a single particle can be described by

xβ(s) =
√

2J β(s) cos[φ + ψ(s)], (1)

where {J, φ} are the action-angle variables specifying a
specific trajectory, β(s) is the beta function, and ψ(s)
is the phase advance. In a perfectly linear machine and
on a time scale much shorter than the radiation damping
time, the action J is conserved and the angle evolves as
φ = φ0 + 2πν0p, where ν0 is the lattice tune and p is
the number of turns. However, weak nonlinearities gener-
ate energy-dependent and amplitude-dependent tune shifts
∆ν = ξδ +aJ , where ξ is the chromaticity and a is the co-
efficient of amplitude-dependent tune shift. For a bunched
beam, particles’ energies and amplitudes have certain dis-
tribution, thus the bunch centroid observed at the BPMs is
the phase-space average of Eq. (1). The resulting centroid
oscillation of an excited beam may not follow Eq. (1), for
example when decoherence occurs. However, for each turn
the centroid is expected to follow single particle behavior
closely, i.e., the centroid oscillation can still be written as

bm
p =

√
2Jpβm cos(φp + ψm), (2)

where bm
p is the beam centroid position at the m-th monitor

for the p-th turn. Note that both action and angle are carry-
ing the turn index so that Eq. (2) can accommodate much
more complicated centroid motion.

In recent years, Model-Independent Analysis (MIA) [1,
2] has emerged as a new approach to study beam dynam-
ics by analyzing beam histories simultaneously recorded at
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a large number of BPMs, i.e., the data matrix BP×M =
(bm

p )/
√

P , where P is the number of turns and M is the
number of BPMs. B is normalized such that BT B is the
variance-covariance matrix of BPM measurements. A ba-
sic MIA technique is the spatial-temporal mode analysis
via singular value decomposition (SVD) of B, which yields

B = USV T =
∑

modes

σiuiv
T
i , (3)

where UP×P = [u1, · · · , uP ] and VM×M = [v1, · · · , vM ]
are orthonormal matrices comprising the temporal and spa-
tial eigenvectors, and SP×M is a rectangular matrix with
nonnegative singular values σi along the upper diagonal.
Similar to the Fourier analysis, this mode analysis de-
composes the spatial-temporal variation of the beam cen-
troid into superposition of various orthogonal modes by
effectively accomplishing a major statistical data analysis,
namely the Principal Component Analysis. A pair of spa-
tial and temporal vectors {vi, ui} characterizes a spatial-
temporal eigenmode, and the corresponding singular value
σi gives the overall amplitude of the mode. It can be shown
that when beam motion is dominated by betatron oscilla-
tions, there are two orthogonal eigenmodes (referred to as
betatron modes) that correspond to the normal coordinates
of betatron motion. In the following, we give the explicit
expression of the betatron modes and their measurements,
then show how to use them to determine phase advances,
beta function, chromaticity, and tune shift with amplitude.

BETATRON MODE MEASUREMENT

When B is dominated by the excited betatron motion
given by Eq. (2) with action and angle independently dis-
tributed, it can be decomposed into [2]

B � σ+u+vT
+ + σ−u−vT

−, (4)

where the spatial and temporal vectors are given by






v+ = 1
σ+

{√〈J〉βm cos(φ0+ψm), m = 1, · · · ,M
}

v−= 1
σ−

{√〈J〉βm sin(φ0+ψm), m = 1, · · · ,M
} (5)

and





u+ =
{ √

2Jp

P 〈J〉 cos(φp − φ0) , p = 1, · · · , P
}

u−=
{
−

√
2Jp

P 〈J〉 sin(φp − φ0) , p = 1, · · · , P
}

.
(6)

Here 〈 〉 means sample average. Note that the spatial vec-
tors are orthogonal single-particle trajectories of Eq. (1)
even though the centroid follows the more complicated
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Figure 1: The first betatron mode of a kick excitation. Mea-
sured values are solid dots and joined by lines for consecu-
tive BPMs. Bad BPMs are dots at zero. The mode number
and its singular value are shown on the left-side label.

Eq. (2). Furthermore, the temporal vectors clearly relate to
the normal coordinates that depict time-evolution in phase
space.

As an example, Fig. 1 shows the first betatron mode of
a horizontally kicked beam in the APS ring. The second
is very similar and not shown for lack of space. The spa-
tial vector is a betatron orbit, although due to the unusable
BPMs the orbit is broken into pieces and looks irregular.
The temporal vector clearly shows a beam that is kicked
at about the 100th turn then decohered and damped. The
Fourier spectrum of the temporal vector shows the betatron
frequency with a broadened peak due to decoherence. Note
that the synchrotron and vertical tunes as well as other non-
linear resonance frequencies are invisible, even though they
do exist and show up in other modes [3]. This indicates the
quality of the betatron modes.

PHASE ADVANCE AND BETA FUNCTION

From the spatial betatron vectors, Eq. (5), the phase ad-
vances can be determined as

ψ = tan−1

(
σ−v−
σ+v+

)
, (7)

where the phase φ0 is absorbed by shifting the reference
point. Since we are interested in only the phase advance
between BPMs, the reference point does not matter. The
beta function can be written as

β = 〈J〉−1
[
(σ+v+)2 + (σ−v−)2

]
. (8)
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Figure 2: Horizontal beta function and phase advance. The
solid dots are MIA measurements. The solid lines are cali-
brated machine model. Diamonds are model values at used
BPMs. Circles are bad BPMs. Figures in the third row are
blowups of the above figures for the first 50 BPMs.

Note that, except for an overall scaling factor 〈J〉 in β, the
phase advance and beta function can be computed from the
spatial betatron vectors. The phase measurement can tol-
erate BPM gain errors, but the beta function measurement
cannot.

Using the measured spatial betatron vectors as shown
in Fig. 1, the beta function and phase advances are com-
puted and shown in Fig. 2. For comparison, the values
from a model fitted with response-matrix measurements
is also shown, which agrees well with the MIA measure-
ments. See [4] for more details on phase advance and beta
function measurements.

CHROMATICITY AND TUNE SHIFT
WITH AMPLITUDE

Chromaticity and tune shift with amplitude are basic pa-
rameters describing the nonlinear energy- and amplitude-
dependent tune shifts. Usually they are determined by di-
rectly measuring the tune slope versus different beam en-
ergies and kick amplitudes. One major limitation of such
measurements is that machine tunes often wobble around
from measurement to measurement such that the chromatic
and nonlinear tune shifts may be obscured. An alternative
approach is to measure chromatic decoherence [5] and non-
linear decoherence [6] of the beam centroid due to the tune
shift ∆ν = ξδ + aJ . Assuming the initial state is a well-
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damped Gaussian distribution in (x, x′) and δ, the centroid
position is given by Eq. (2) with [7]

√
Jp =

√
Jmax

1
1 + θ2

e
−Z2

2
θ2

1+θ2 e
−2

(
ξσδ
νs

)2
sin2(πνsp) (9)

and

φp = φ0 + 2πν0p +
Z2

2
θ

1 + θ2
+ 2 tan−1 θ, (10)

where θ = 2πaεp, ε is the emittance, Z =
√

2Jmax/ε is
the kick strength, σδ is the energy spread, and νs is the syn-
chrotron tune. Fitting these with measured centroid evolu-
tion gives the products aε and ξσδ .

The temporal betatron vectors such as the one shown in
Fig. 1 can be used in both approaches and may result in
significant improvement by reducing the random noise by
a factor of about 1/

√
M . (Differences in BPM resolutions

and beta values at BPM locations must be taken into ac-
count for better estimate.) For the direct tune measurement
approach, one simply does a spectrum analysis of the tem-
poral vectors. Since the signal often decoheres very fast,
one may need to apply the NAFF technique [8] on a small
number of turns to determine the tune for each kick. For de-
coherence measurement, Jp and φp can be simply obtained
from the temporal vectors of Eq. (6) as

Jp = P 〈J〉u
2
+ + u2

−
2

, φp = − tan−1

(
u−
u+

)
. (11)

Note that both Jp and φp are smooth functions without fast
betatron oscillation. They provide independent constraints
for fitting the decoherence parameters.

As examples, we show preliminary results of two sets (at
0.2 and 1.5 mA) of horizontal measurements using horizon-
tally kicked single bunches (at five different amplitudes in
each set) in the APS ring. We choose the low current in
order to minimize the wakefield effect since the above de-
coherence model does not take such an effect into account.
The temporal vectors at the lowest kick are shown in Fig. 3,
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Figure 3: The temporal betatron vectors of 0.3 kV kick
excitation (Z = 3.2) at 0.2 mA (top) and 1.5 mA (bottom).

where the wake effect is obvious. Since the APS BPM sys-
tem is not intended for measuring such a low current, the
resolution at 0.2 mA is very poor (five times worse than at
1.5 mA). Thanks to MIA noise reduction, we are still able
to obtain decent decoherence measurements.
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Figure 4: Tune slopes versus
kick amplitudes.
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Figure 5: Measured and fit-
ted decoherence.

The results of tune slope measurements are shown in
Fig. 4, where the NAFF results are based on the first
20 turns of temporal vectors, which yield a � −3.2 ×
10−4m−1 and −3.8 × 10−4m−1 for 0.2 mA and 1.5
mA, respectively. The phase-advance results are based on
Eq. (7), which yields a � −4.2 × 10−4m−1 for 1.5 mA
and failed at 0.2 mA due to noise. The apparent offset is
unclear at this point. The result of fitting decoherence at
0.2 mA is shown in Fig. 5. Fitting for 1.5 mA failed due
to the wakefield effect. Since the beam completely deco-
hered well before θ reached 1, the phase cannot constrain θ
due to uncertainty in ν0. Thus, only the fit for Jp is shown,
which yields ξσδ � 6.2 × 10−3 and aε � 1. × 10−4. With
σδ = 0.9 × 10−3 and ε = 2.4nm, we have ξ � 6.9 and
|a| � 4 × 104m−1. The measured chromaticity and tune
shift with amplitude are consistent with the model.

Thanks to V. Sajaev for providing information about the
APS storage ring model.
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