
PARALLEL COMPUTATION OF BEAM-BEAM INTERACTIONS
INCLUDING LONGITUDINAL MOTION

F.W. Jones, TRIUMF, 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3
W. Herr, CERN, CH-1211 Geneva 23, Switzerland

Abstract

In beam-beam macroparticle simulations for collider
rings, the accurate determination of the incoherent spec-
trum and potentially unstable coherent modes requires (1)
large numbers of collisions, and (2) accurate electric field
solutions at each collision. On a single processor, a self-
consistent simulation typically uses a 2D model of the
beam-beam interaction in order to achieve a reasonable
computation time, however for the long (∼0.3m) bunches
in the LHC we wish to include the third dimension in order
to account for effects such as longitudinal motion, cross-
ing angle, and the beam size and density variations. We
describe here a parallel algorithm, developed with MPI on
a small commodity Linux cluster, to extend our simulation
code BeamX from 2D to 3D using longitudinal subdivision
(slicing) of the bunches. Although this paper concentrates
on the computing methods, some performance trials and
example results will also be shown.

INTRODUCTION

In investigating coherent beam-beam effects in colliders,
one goal of simulations is to identify potentially unstable
modes and possible damping mechanisms. In this respect,
useful qualitative descriptions can be obtained by simplifi-
cations such as rigid-bunch and soft-gaussian models, but
herein we restrict ourselves to “self-consistent” simulations
in which the electric fields are computed directly from the
ensemble of macroparticles without assumptions as to the
nature of their distribution.

For a 2D model of the beam-beam forces, such sim-
ulations are feasible on today’s desktop computers using
conventional particle-mesh field solvers or, for parasitic
collisions, grid-multipole[1] and shifted Green’s function
methods[2]. However, the 2D treatments omit longitudi-
nal effects such as: (1) longitudinal variation in transverse
beam size (hourglass effect); (2) variation of longitudinal
density (affects the strength of the beam-beam forces); (3)
the effect of beams crossing at an angle instead of head-
on; and (4) the coupling of longitudinal motion with these
effects. It is therefore of interest for the LHC and other
colliders to extend our simulations to 3D if it can be done
without prohibitive computational cost.

EXTENSION TO 3D

As in space-charge simulations, there are various nu-
merical methods by which one can compute the bunch-to-
bunch forces in 3D, and these methods are generally practi-

cal only for parallel computation. In our case, to show suf-
ficient detail in the coherent frequency range requires∼10 5

or more simulated collisions, suggesting that the prob-
lem lies in the supercomputer realm. However, the small
transverse-longitudinal aspect ratio of the LHC bunches al-
lows us to seek economies by using a rather coarse-grained
subdivision of the solution domain in the longitudinal di-
rection. In conjunction with a 36×36 or more computa-
tional mesh in the transverse plane, we divide the beam
longitudinally into ∼10 segments. This “bunch slicing”
approach[3, 4] is applied to both beams, and the beam-
beam collision is treated as a series of 2D slice-slice in-
teractions (see Figure1).

For particle-mesh solvers it is natural to parallelize the
field solver in the mesh computation stage. For the BeamX
code, however, the fast-multipole solver in use does not
lend itself readily to parallel decomposition because of
its adaptive subdivision and hierarchical data structures.
Hence, we have pursued a more fundamental parallelism,
that of the pairwise slice interactions, which may be done
independently on different processors provided the causal
relationships are maintained. For N slices in each beam,
the number of overlapping slices during the collision varies
from 1 to N to 1, allowing a parallel speed-up of roughly
N/2 by the application of N processors.

PARALLEL ALGORITHM

The design and implementation of the parallel version of
BeamX were done using a small commodity Linux cluster,
representing a low-cost resource which is able to handle
small numbers of slices. Utilizing the MPI toolkit for inter-
process communication, the fundamental division of labour
is between a master process and several slave processes, as
follows:

Master:

• Filling of slice data structures (longitudinal binning)
• Dispatch of slice-data to Slaves
• Receipt of slice-data to Slaves and un-binning
• Longitudinal transport to next IP
• Compiling statistics and all program output

Slave:

• Receipt of slice-data from Master
• Computation of electric fields
• Application of beam-beam forces via symplectic map
• Transport in transverse plane to next IP
• Dispatch of slice data to other Slaves and Master

0-7803-7739-9 ©2003 IEEE 3404

Proceedings of the 2003 Particle Accelerator Conference

As described in the next section, the Slaves require a
nearly complete set of coordinates (x, x′, y, y′, ε=∆E/E)
for the macroparticles in a slice-pair to do their work, en-
tailing ∼0.5MB of data per 10k particles. With this com-
munication overhead it is imperative to minimize the mes-
sage volume between processes, and to this end a topol-
ogy has been devised in which one beam’s slices “stay
at home”, i.e. are resident in the Slave processes, and the
other beam’s slices “go visiting”, i.e. are passed between
Slave processes. This is illustrated schematically in Fig-
ure 1. Once a Slave has received its assigned Beam 1 slice
from the Master, it is ready to receive Beam 2 slices to in-
teract with it. The Master (process 0) sends Beam 1 slices
1, . . . , N to Slave processes 1, . . . , N respectively. It sends
all the Beam 2 slices to Slave 1 in sequence. When Slave
1 receives a Beam 2 slice, it does the pair-interaction, up-
dates the coordinates of each slice, and passes the Beam 2
slice on to Slave 2. Slave n, 1 < n ≤ N , receives a Beam 2
slice from Slave n−1, does the pair-interaction, and passes
it on to Slave n + 1, or to the Master if n = N . Once a
Slave has dealt with the last Beam 2 slice, it is finished with
slice-interactions for this collision and can send its resident
Beam 1 slice data to the Master.

In this scenario the Master does not have to perform any
control or synchronization functions for the Slaves. All
processes are essentially free-running and the data flow it-
self imposes and maintains the proper ordering of events.

MASTER

34 2 15

1

3

2

45

Slave 5 Slave 4 Slave 3 Slave 2 Slave 1

12345

1 2 4 5

Beam 1

Beam 2

3

I.P.

Beam 1 data

Beam 2 data

Figure 1: Inter-process communication scheme for parallel
computation (case of 5 slices per bunch)

DETAILS OF SLAVE WORK

The interaction of a slice-pair i–j occurs at the interac-
tion point (IP) if i = j, but otherwise occurs at distance
s = (j − i) ∗ H/2, the collision point (CP), where H
is the slice length. Since macroparticle transport through
the rings is done by an IP-to-IP map, it is convenient to
“drift” the particles forward or backward to the CP, eval-
uate and apply the beam-beam forces, and drift them to
the IP again. In extending to 3D the angular kicks due
to transverse forces are now accompanied by energy kicks
due to longitudinal forces. To preserve symplecticity in the

6 phase-space variables the “synchro-beam” mapping[5] is
employed:

xnew = x − sFx/2
x′new = x′ + Fx

ynew = y − sFy/2
y′new = y′ + Fy

εnew = ε + Fx(x′ + Fx/2)/2 + Fy(y′ + Fy/2)/2
−s(σ2

xFx + σ2
yFy)

where Fx and Fy are the angular deflections of a particle
which has coordinates (x, y) when it passes the IP and en-
counters a given slice of the opposing beam at distance s
from the IP, and σ2

x and σ2
y are the variances of the oppos-

ing beam.
The above mapping applies to beams moving on parallel

trajectories. If the beams cross at an angle then a Lorentz
transformation[6] is applied to each slice in turn so that it
is oriented parallel to the opposing slice, after which the
electric fields are computed, the synchro-beam mapping is
done, and then the inverse transformation is performed.

After these iterated series of transformations for slice-
pairs, all coordinates are transformed back to the IP in
that their relative positions are consistent with the opposing
bunches being in the middle of their collision, i.e. centered
at the IP. It is then straightforward to transform all coordi-
nates to the next IP by the conventional transfer matrix and
longitudinal difference equations, according to the lattice
optics and the applied RF voltage.

PERFORMANCE

We performance-tested the parallel BeamX code on
three different platforms:

1. Linux, Pentium IV 1.6 GHz, 100Mb Ethernet,
MPICH toolkit

2. Linux, Pentium III 1.4 GHz, 1Gb Ethernet, LAM MPI
toolkit

3. Linux, Pentium III 1.4 GHz, Dolphin Scalable Coher-
ent Interconnect (SCI), SCALI MPI toolkit

On each platform, 1000 collisions were executed for vary-
ing numbers of slices N , where the number of parallel pro-
cesses was N + 1. In order to estimate both the communi-
cation overhead and the parallel speedup, each job was run
normally with each process running on a separate CPU, and
with all processes running on a single CPU. As seen in Fig-
ure 2, there is significant communication overhead but the
N2 complexity is reduced to nearly linear scaling by the
parallel algorithm.

With conventional ethernet communications, increasing
the bandwidth by a factor of 10 yielded a significant perfor-
mance improvement for small numbers of slices, even with
somewhat slower processors. For larger numbers of slices,
the communication burden becomes proportionally smaller
and the parallel efficiency becomes about the same for the
three communication hardware/software configurations. In

3405

Proceedings of the 2003 Particle Accelerator Conference

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

Number of slices N

C
om

pu
ta

tio
n

tim
e

(s
ec

)
P4−1.6 100Mb, N+1 proc
P4−1.6 100Mb, 1 proc
P3−1.4 SCI, N+1 proc
P3−1.4 1Gb, N+1 proc
P3−1.4 1Gb, 1 proc

Figure 2: Parallel and single-node performance timings

particular the SCI showed no benefit over Ethernet in our
trials. This may be a matter of tuning and remains to be
investigated.

EXAMPLES

The 3D-extended BeamX code has been applied to some
test cases for the LHC with a single interaction point. For
the LHC there is no dispersion in the interaction region and
the variation of beam size along the bunch length (hour-
glass effect) is quite small. The dominant longitudinal ef-
fects are due to the synchrotron motion and the crossing
angle. Figure 3 shows the FFT spectra of the coherent fre-
quencies (beam centroid motion) for runs of 2 17=131072
turns with 5 longitudinal slices and 50000 macroparticles,
with an applied RF of 40 MV/turn (nominal synchrotron
tune Qs=0.00335) and with crossing angles of 0, 150,
and 300 µradian. The crossing angle induces a relativis-
tic projection of the beam-beam force and hence reduces
the beam-beam tune shift as seen by the π mode frequency
which shifts from its normal value of −1.21 to −1.10 and
−0.92, respectively. With RF on, the synchrotron tune is
comparable in size to the beam-beam tune shifts as revealed
by the multiple sidebands.

As in soft-Gaussian simulations with bunch slicing[4] a
relatively modest number of slices and macroparticles suf-
fice to model these basic phenomena. Running the same
cases with >5 slices and >50000 macroparticles showed
little difference in the coherent spectra, with the relevant
features being essentially unchanged.

CONCLUSIONS

A three-dimensional self-consistent multiparticle beam-
beam simulation has been developed using coarse-grained
longitudinal subdivision and parallel programming tech-
niques. The implementation via MPI, with a master-
slave/slave-slave message-passing algorithm, reduces the
computational cost from N 2 to linear scaling with the num-
ber of slices N and makes it feasible to run simulations on

−3 −2 −1 0 1 2 3

10
−2

10
0

10
2

−3 −2 −1 0 1 2 3

10
−2

10
0

10
2

−3 −2 −1 0 1 2 3
10

−2

10
0

10
2

(f − Q
y
)/ξ

Figure 3: Spectra with 0, 100, and 300µr crossing angle

small low-cost Linux clusters with ethernet. To further de-
crease computation times, the use of more advanced MPI
and/or SCI features may decrease communication over-
head, and further parallelism can be sought, such as a
parallelized multipole solver. In this work we have con-
fined ourselves to commodity-based hardware/software so-
lutions. The use of shared-memory parallel systems could
yield greater parallel efficiency, although at considerably
higher cost.

ACKNOWLEDGEMENTS

We would like to thank Corrie Kost and Steve McDon-
ald for establishing a test-bed Linux cluster at TRIUMF on
which we could develop and test the code, and James Pin-
fold and Bryan Caron for arranging access to the THOR
cluster at the University of Alberta Physics Department.

REFERENCES

[1] W. Herr, M.P. Zorzano and F. Jones, Phys. Rev. S.T. Accel.
Beams 4, 054402 (2001).

[2] J. Quiang, M.A. Furman and R.D. Ryne, Phys. Rev. S.T. Ac-
cel. Beams 5, 104402 (2002).

[3] A. Jejcic et al., XVII Int. Conf. on High Energy Accelerators,
Dubna 1998, 220.

[4] W. Herr and R. Paparella, LHC Project Note 304, CERN
2002.

[5] K. Hirata, H. Moshammer and F. Ruggiero, Part. Accel. 40,
205 (1993).

[6] K. Hirata, Phys. Rev. Lett. 74:12, 2228 (1995).

3406

Proceedings of the 2003 Particle Accelerator Conference

