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Abstract

To analyze how insertion devices affect on an elec-
tron beam dynamics, it is necessary to know theirs three-
dimensional distribution of the magnetic field. This is of
particular value for non-standard wiggler designs, such as
with trapezoidal or staggered magnetic blocks, or with al-
ternate pole canting. It is generally shown in this paper that
by the knowing of two-dimensional distribution of mag-
netic field at the median plane of the insertion device, it
is possible to calculate the three-dimensional distribution
of this field over all space. The analytical expressions for
the magnetic field components are derived for the general
case, both for planar and non-planar insertion devices. The
obtained magnetic field satisfies the Maxwell equations.

1 INTRODUCTION

Nowadays the most accurate information about mag-
netic fields of insertion devices comes from a numerical
or analytical calculation. At the same time, it is neces-
sary in some occasions to use more realistic description
of the magnetic field. Electron trajectory and spin motion
can be numerically calculated using field map along beam
trajectory. But the map usually has some errors and thus
the magnetic field, either simulated or measured, not al-
ways satisfy Maxwell equations. To overcome this prob-
lem, usually two methods of improving of the magnetic
field data are used. The first one implies some small mod-
ification of data to make them satisfy Maxwell equations.
The second method implies the calculation or measuring
one or two components of the field with the following re-
covering of other components of magnetic field. Second
method sounds much more physically (see [1]), and this
is a method whereby magnetic fields of helical coils were
calculated [2]. This method was also applied for periodic
magnetic systems [3] and for helical wigglers [4]. Within
the context of this approach, the following problem should
be solved: which set of magnetic field data is necessary
and sufficient for unique recovering of magnetic field over
all space. It has been theoretically proved in this paper that
if all three components of magnetic field are given at the
median plane of insertion device, its magnetic field can be
recovered uniquely over all space. This result is obtained
for a general case, both planar and non-planar, periodical
or non-periodical insertion devices.

2 MAGNETIC FIELD CALCULATION

Let us consider the right-hand Cartesian system of coor-
dinates with the x and y axis directed horizontally and z
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axis directed upwards. Magnetic field

�H (x, y, z) = {Hx (x, y, z) , Hy (x, y, z) , Hz (x, y, z)}
(1)

satisfies Maxwell equations:

div �H (x, y, z) = 0 (2)

rot �H (x, y, z) = 0

It follows from equations (2) that �H (x, y, z) satisfies
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
�H (x, y, z) = 0 (3)

The plane x0y is assumed to be free of magnetic material
and every of three components of magnetic field are speci-
fied at the plane x0y:

Hx (x, y, z = 0) (4)

Hy (x, y, z = 0)
Hz (x, y, z = 0)

and the following relation is fulfilled:

∂

∂x
Hy (x, y, z = 0) =

∂

∂y
Hx (x, y, z = 0) (5)

Let us find now the components of magnetic field
Hx,y,z (x, y, z) at z �= 0. Hz (x, y, z) may be expressed
through the Maclaurin series:

Hz (x, y, z) =
∞∑

n=0

zn

n!

(
∂n

∂zn
Hz (x, y, z)

)
z=0

(6)

It is easy to derive from (3) that:(
∂2k

∂z2k
Hz (x, y, z)

)
z=0

(7)

= (−1)k
(

∂2

∂x2
+

∂2

∂y2

)k

Hz (x, y, z = 0)

k = 0, 1, 2, 3, · · ·
and hence: (

∂2k+1

∂z2k+1
Hz (x, y, z)

)
z=0

(8)

= (−1)k
(

∂2

∂x2
+

∂2

∂y2

)k (
∂Hz (x, y, z)

∂z

)
z=0

k = 0, 1, 2, 3, · · ·
The expression (6) can be written as:

Hz (x, y, z) =
∞∑

k=0

z2k

(2k)!

(
∂2k

∂z2k
Hz (x, y, z)

)
z=0

(9)

+
∞∑

k=0

z2k+1

(2k + 1)!

(
∂2k+1

∂z2k+1
Hz (x, y, z)

)
z=0
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By the substituting (7) and (8) into (9), we get:

Hz (x, y, z) =
∞∑

k=0

z2k

(2k)!
(−1)k

(
∂2

∂x2
+

∂2

∂y2

)k

(10)

×Hz (x, y, z = 0) +
∞∑

k=0

z2k+1

(2k + 1)!

× (−1)k

(
∂2

∂x2
+

∂2

∂y2

)k (
∂Hz (x, y, z)

∂z

)
z=0

One can find from div �H (x, y, z) = 0 that:

∂Hz (x, y, z)
∂z

∣∣∣∣
z=0

(11)

= −
(

∂Hx (x, y, z = 0)
∂x

+
∂Hy (x, y, z = 0)

∂y

)

where right side is specified by the initial conditions (4). It
immediately follows that:

Hz (x, y, z) =
∞∑

k=0

z2k

(2k)!
(−1)k

(
∂2

∂x2
+

∂2

∂y2

)k

(12)

×Hz (x, y, z = 0)

−
∞∑

k=0

z2k+1

(2k + 1)!
(−1)k

(
∂2

∂x2
+

∂2

∂y2

)k

×
(

∂Hx (x, y, z = 0)
∂x

+
∂Hy (x, y, z = 0)

∂y

)

Since the equations (2) include the following relations:

∂

∂z
Hy (x, y, z) =

∂

∂y
Hz (x, y, z) (13)

∂

∂z
Hx (x, y, z) =

∂

∂x
Hz (x, y, z)

we can derive the following expressions for Hy and Hx

over all space:

Hy (x, y, z) (14)

= Hy (x, y, z = 0) +

z∫
0

∂Hy (x, y, z′)
∂z′

dz′

= Hy (x, y, z = 0) +

z∫
0

∂Hz (x, y, z′)
∂y

dz′

and similarly:

Hx (x, y, z) (15)

= Hx (x, y, z = 0) +

z∫
0

∂Hx (x, y, z′)
∂z′

dz′

= Hy (x, y, z = 0) +

z∫
0

∂Hz (x, y, z′)
∂x

dz′

Now we can state the following result. Given the three
components of magnetic field in the median plane x0y (see
(4)), which satisfy the relation (5), one can find the mag-
netic field distribution over all space by the use of Eqs.
(12), (14) and (15)). It is easy to find that the resulting
magnetic field satisfies Maxwell equations (2).

This result may be explained in the following manner.
Maxwell equations for static magnetic field consist of four
equations. These equations forms the linear system of
equations for derivatives of components of the magnetic
field. So we have four equations for the nine unknown
quantities. To solve uniquely this system, we have to de-
fine five of nine quantities. As it was mentioned above,
we specify the distribution of magnetic field in the median
plane x0y (see (4)). It means, that the following quanti-
ties are specified: ∂Hx

∂x , ∂Hx

∂y , ∂Hy

∂x , ∂Hy

∂y , ∂Hz

∂x and ∂Hz

∂y
(for example, we can calculate them numerically). Total
number of just listed quantities is six. But magnetic field
has to satisfy Eq. (5), and as a consequence two of these
six components are dependent. So we have five indepen-
dent quantities as initial conditions, and we can calculate
from Maxwell equations three others quantities, namely:
(∂Hx

∂z ,
∂Hy

∂z and ∂Hz

∂z ).

3 SYMMETRIC MAGNETIC SYSTEM

Let us assume that the magnetic system is symmetric
with respect to the plane x0y. By this it is meant that initial
conditions in the plane x0y are as following:

Hx (x, y, z = 0) = 0 (16)

Hy (x, y, z = 0) = 0
Hz (x, y, z = 0) �= 0

It is follows from Eqs. (2) and (16), that

∂Hz (x, y, z)
∂z

∣∣∣∣
z=0

= 0 (17)

By the substituting Eq. (17) into Eqs. (10), (14) and (15),
one can find that:

Hz (x, y, z) (18)

=
∞∑

k=0

(−1)k
z2k

(2k)!

(
∂2

∂x2
+

∂2

∂y2

)k

Hz (x, y, z = 0)

∼= Hz (x, y, z = 0)

−z2

2

(
∂2

∂x2
+

∂2

∂y2

)
Hz (x, y, z = 0) + · · · ,

Hx (x, y, z) (19)

=
∞∑

k=0

(−1)k
z2k+1

(2k + 1)!

(
∂2

∂x2
+

∂2

∂y2

)k

× ∂

∂x
Hz (x, y, z = 0) ∼= z

∂Hz (x, y, z = 0)
∂x

−z3

6

(
∂2

∂x2
+

∂2

∂y2

)
∂Hz (x, y, z = 0)

∂x
+ · · ·
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and

Hy (x, y, z) (20)

=
∞∑

k=0

(−1)k
z2k+1

(2k + 1)!

(
∂2

∂x2
+

∂2

∂y2

)k

× ∂

∂y
Hz (x, y, z = 0) ∼= z

∂Hz (x, y, z = 0)
∂y

−z3

6

(
∂2

∂x2
+

∂2

∂y2

)
∂Hz (x, y, z = 0)

∂y
+ · · ·

As we can see, all the field components are expressed
through the Hz (x, y, z = 0) only.

4 CONCLUSION

Results presented here may have extensive applications
in accelerator theory. It give the way to calculate, for exam-
ple, the focusing properties of wiggler or dynamical aper-
ture of accelerator. The derived here analytical expressions
can be used not only for wigglers and undulators, but for
quadrupoles or sextupoles also. The application of this
method for concrete devices calls for further investigation.
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