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Abstract 

The fast ion instability is considered for a distribution 
of ion bounce frequencies.  Because of the spread in 
bounce frequencies, the instability initially grows 
exponentially with propagation distance.  When the initial 
growth saturates, the instability grows exponentially with 
the square root of the propagation distance; the saturated 
growth equals that calculated when the spread in ion 
bounce frequencies is neglected.  For a broad distribution 
of ion bounce frequencies, instability may be prevented by 
a betatron damping rate that exceeds the incoherent 
betatron frequency shift induced by ions at the tail of the 
bunch train. 

1  INITIAL GROWTH 
To model the initial growth of the fast ion instability 

[1–11] and thereby determine the betatron damping rate or 
feedback necessary to prevent it, a distribution of ion 
“bounce” frequencies is considered.  The bounce 
frequency is the natural frequency of transverse ion 
oscillations about the electron orbit [12], given for small 
vertical oscillations (<< yσ ) of singly charged ions by  
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in which ne is the time-averaged electron density on axis 
during the passage of a bunch train or electron beam, mi is 
the ion mass, xσ  and yσ  are the horizontal and vertical 

beam dimensions, e is the electron charge and oε  is the 

permittivity of free space.  Because of the dependence 
upon the ion mass and the position-dependent quantities 
ne, xσ  and yσ , a large range of ion bounce frequencies 

may be expected in a typical electron storage ring.   
We consider a magnetically focused electron beam or 

bunch train, using a smooth approximation for the betatron 
focusing.  In the case of a bunch train, we model a bunch 
train of duration τb as an electron beam of duration τb.  The 
propagation time Z ≡ z/v describes the propagation 
distance z divided by beam velocity v, while coordinate 
T ≡ t - z/v denotes the time after passage of the beam head.  
We assume that the ion density grows linearly with the 

passage of the beam.  For small vertical displacements 
(<< yσ ) of the electrons, the electron “bounce frequency” 

in the ion channel, denoted ωe(T), is  
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where ni(T) is the ion density at a time T after the passage 
of the beam head, me is the electron mass, and γ is the 
relativistic factor.  For ions created by collision of the 
electrons with neutral molecules and lost on a time scale 
large compared to the beam duration τb, ni(T) is 
proportional to T, so we have 

KTTe =ω )(2  ,                               (3) 

where K ≡ ωe

2(τb)/τb. 
The approximate equations of motion for the electron 

beam vertical position b(Z,T), the average vertical position 
c(Z,T) of all ions, and the average vertical position ci(Z,T) 
of those ions with bounce frequency ωi are [1] 

),()(),()( 2222 ][ TZcTTZbT eeZ ω=ω+ω+∂ β ,     (4) 
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where ωβ is the electron betatron frequency in the absence 
of ions.  

When ωβ = 0, eqs. (1)–(5) describe the “ion hose” 
instability of an electron beam focused by a beam-induced 
ion channel [1].  In an electron storage ring, where ion 
effects are a perturbation to the betatron motion in applied 
magnetic fields, we instead have ωβ >> ωe(T). 

 In eq. (5), the term ),()/1( TZcT iT∂  describes the 

damping of collective ion oscillations that results from the 
constant creation rate of stationary ions.  This damping 
rate of ~1/T is small compared to the phase-mix damping 
rate ~δωi from an ion frequency spread of δωi provided 
that δωi >> 1/T.  Consequently, its neglect is justified for  
δωiT >> 1, i.e. several ion oscillation periods behind the 
head of the beam when there is a large ion frequency 
spread.  For δωiT >> 1, we therefore approximate eq. (5) 
as 

),(),( 222 ][ TZbTZc iiiT ω=ω+∂ .                    (6) 
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For a disturbance originating at (Z,T) = (0,0), we look 
for a solution where b(Z,T) and c(Z,T) are of the form [10]  
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with ω > 0.  In eq. (7), the incoherent betatron frequency 
shift resulting from the ions, ωe

2(T)/2ωβ, is included in the 
oscillation frequency.  The slowly-varying function g(Z,T) 
describes the oscillation growth.  To ensure that ω is the 
initial oscillation frequency in the laboratory, we consider 
solutions where g(Z,T) is real for small Z. 

Substituting eq. (7) into eqs. (4) and (6) yields 

( ) KTcbgi Z =∂ωβ2 ,                                      (8) 

bcZgZi iiiT
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where )(~ Zω  is given by  

βω
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The quantity )(~ Zω  is the oscillation frequency in the 

laboratory given by eq. (7) when g(Z,T) is real; )(~ Zω  

equals ω for Z = 0, and equals zero for Z = Zo, where  
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For a normalised distribution over positive ion bounce 
angular frequencies f(ωi), the average ion vertical position, 

( ) iii dfcc ωω=∫  may be obtained from eq. (9), giving 
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Using  eq. (12) to eliminate c(Z,T) from eq. (8) yields 
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To obtain the initial growth rate when g(Z,T) is real, 
consider the weak growth limit (∂T g → 0) given by the 
Plemelj formula [13]  
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For an ion distribution with width δωi , )(~ Zω ≈ ω and 

f(| )(~ Zω |) ≈ f(ω) when Z << (δωi /ω)Zo.  Equation (14) then 

becomes 
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which integrates to give solutions with g(0,T) = g(Z,0) = 0 
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The requirement that g(Z,T) be a real function for small 
Z determines ω, which obeys 
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For an ion distribution peaked at ωio, eq. (17) indicates that 
ω ≈ ωio.  Thus, we have 
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The solution with the “+” sign undergoes exponential 
growth in T and Z.  Substituting eq. (18) into eq. (7) yields 
solutions valid for Z << (δωi /ωio)Zo, δωiT >> 1, and 
sufficiently small Z that the Plemelj formula applies 
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For a broad distribution of ion bounce frequencies 
where δωi /ωio ~ 1/2, the initial growth rate in Z is 
comparable to the incoherent betatron frequency shift of 
ωe

2(T)/2ωβ that results from the ions.  Consequently, 
instability may be prevented by a betatron damping rate 
that exceeds the incoherent betatron frequency shift 
induced by ions at the tail of the bunch train. 

2  SUBSEQUENT GROWTH 
Consider the instability growth when (δωi /ωio)Zo << Z 

<< 2Zo and δωiT >> 1.  For a disturbance with ω ≈ ωio, we 

have iioZ δω>>ω−ω )(~ , so that eq. (13) becomes 
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Equation (20) is identical to that describing the fast ion 
instability when all ions have the same bounce frequency 
(see Ref. [10], eq. 18).  When Z << Zo, eq. (20) becomes 
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with solutions [2] 
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For (δωi /ωio)Zo << Z << Zo, the growing solution given 
by eq. (22) has lower values of gZ∂  and gT∂  than is 

given by eq. (18), indicating that the initial instability 
growth has saturated.  The saturation occurs when the 
oscillation frequency in the laboratory, )(~ Zω , no longer 

coincides with a typical ion bounce frequency.  The 
saturated growth equals that calculated when the spread in 
ion bounce frequencies is neglected. 

3  EXAMPLE 
Consider a Cauchy distribution of ion bounce 

frequencies with peak at ωio and half-width δωi << ωio 

1988
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For a Cauchy distribution, the decoherence function [3] 

defined by ( ) ( ) ( )[ ]∫ ω−ωωω≡ TifdTD ioiii expˆ  equals 

( )Tiδω−exp .  The exponential ion decoherence (also 

called “phase-mix damping”) for a Cauchy distribution of 
ion bounce frequencies behaves like frictional damping 
(“phenomenological” or “Q-damping”) of ions with a 
single bounce frequency [14].   For an exponential ion 
decoherence, eq. (30) of Ref. [3] gives a solution for 
g(Z,T) with g(Z,0) = g(0,T) = 0, valid for Z << Zo.  In our 
notation, this solution is 
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where Io is the zeroth-order Bessel function of imaginary 
argument.   

For small Z, the Taylor expansion A(Z,T) = A(0,T) + 
[∂A/∂Z(0,T)]Z gives 

( )
( )

( )[ ]TT
ZK

TZA ii
i

io δω+−δω−












δωω

ω
+=

β

1exp
4

1,
2

,  (25) 

which, for δωiT >> 1, reduces to 
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This is identical to the growing solution given by eq. (18), 
confirming that eq. (18) describes the initial instability 
growth.  For a Cauchy distribution of ion bounce 
frequencies, we expect that the Plemelj formula may be 
applied to eq. (13) when the integrand’s pole at ωio + i∂T g 
is much closer to the real axis than the poles of f(ωi) 
located at ωio ± iδωi.  Thus, eq. (26) is expected to apply 
for Z << (δωi /ωio)

2Zo and δωiT >> 1. 
In contrast, for Z >> Zo/(ωioT)2, the Bessel functions in 

eq. (24) may be approximated by their large-argument 
asymptotic expansion, yielding eq. (31) of Ref. [3] 
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For Z >> (δωi /ωio)

2Zo, eq. (27) reproduces the growing 
solution given by eq. (22).   

Consequently, for (δωi /ωio)
2Zo << Z << Zo and δωiT >> 

1, eq. (22) describes instability growth for a Cauchy 
distribution.  As expected, eq. (22) describes the saturated 
growth subsequent to (i.e., downstream of) that described 
by eq. (18).  

4  SUMMARY 
We have considered the initial and subsequent growth 

of the fast ion instability for a distribution of ion bounce 
frequencies.  The initial growth is exponential in Z and T, 
where Z is the propagation distance divided by beam 
velocity, and T the time elapsed since the head of the 
beam has passed.  For larger Z, the growth is exponential 
in Z1/2 and T; this saturated growth equals that calculated 
when the spread in ion bounce frequencies is neglected.  
For a broad distribution of ion bounce frequencies, 
instability growth may be prevented by a betatron 
damping rate that exceeds the incoherent betatron 
frequency shift induced by ions at the tail of the bunch 
train. 
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