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Abstract

Analysis of particle interaction in the laboratory frame of
storage rings is often complicated by the fact that particle
motion is relativistic, and that reference particle trajectory
is curved. Rest frame of the reference particle is a conve-
nient coordinate system to work with, within which particle
motion is non-relativistic. We have derived the equations
of motion in the beam rest frame from the general relativ-
ity formalism, and have successfully applied them to the
analysis of crystalline beams [1].

1 DERIVATION
The motion of charged particles under Coulomb interac-

tion and external electromagnetic (EM) forces can be most
conveniently described in the rotating rest frame of the ref-
erence particle of which the orientation of the axes are con-
stantly aligned to the radial, tangential, and vertical direc-
tion of the motion. In this frame, particle motion within the
beam bunch is non-relativistic.

We derive the equations of motion using the general rel-
ativity formalism. First, we express the equations of mo-
tion in a general tensor formalism. The Lorentz force ex-
perienced by the particle is constructed as a product of the
EM field tensor and the four-velocity. Starting from the
laboratory frame, the EM field tensor is written by means
of the components of the EM fields. Then, tensor algebra
is used to transform this field tensor into the rest frame.
With a similar transformation, the metric tensor of the rest
frame is also obtained. The equations of motion can thus
be constructed in the rest frame which include centrifugal
force, Coriolis force, time-dependent external EM forces,
and electrostatic Coulomb forces. Finally, these equations
are re-scaled in terms of dimensionless quantities for the
convenience of computer simulation and analysis.

1.1 Tensor formalism
Adopting the formalism used by M6oller,[2] we consider

the motion of a particle in an arbitrary system of coordi-
nates (xi), where i = 1; 2; 3; 4 indicate the space-time
components. The metric tensor fgijg is defined in terms
of the differential line element ds as ds2 = gijdx

idxj ,
where the summation is performed over the four indices.
Let xi = xi(�) be the equation of the time track of the
motion, � being the proper time of the particle. The con-
travariant components of the four-velocity are

U i � dxi

d�
= (�u�;�c);
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where u� = dx�=dt are the contravariant components of the
spatial velocity, the Greek letter � indicates the three spatial
components, dt = �d� , c is the speed of light, and

� =

(�
(�g44) 12 � g�4u

�

c
p�g44

�2
� u2

c2

)
�

1

2

(1)

is the generalized Lorentz factor. The contravariant com-
ponents of the four-momentum are P i = m0U

i, where m0

is the proper mass of the particle.
Acted upon by a non-gravitational four-force fF ig, the

equations of motion of the particle can be written as

DP i

d�
= gikFk; FiU

i � 0; (2)

where the 4 � 4 matrix fgijg is the inverse of fgijg, and
the covariant differentiation is defined as

DP i

d�
� dP i

d�
+�likU

kP l; �lik=
glm

2

�
@gmi

@xk
+
@gmk

@xi
� @gik
@xm

�
(3)

Among the non-gravitational forces, the external EM force
acting upon the particles is expressed by means of the EM
field tensor fFijg as

Fi =
e

c
FikU

k; (4)

where e is the electric charge, and fFijg is anti-symmetric.
The Maxwell’s equations are given by8>><

>>:
@Fik
@xl

+
@Fkl
@xi

+
@Fli
@xk

= 0;

1pjgj
@

@xi
(
p
jgjF ik) =

�0U
i

c
;

(5)

where F ij = gilgjmFlm, jgj is the absolute value of the de-
terminant of the metric fgijg, and �0 is the charge density
measured in the system of inertia.

1.2 Laboratory frame
In the Cartesian coordinate system of inertia (X i), the

so-called laboratory frame, Eq. 2 can be written in the con-
ventional vector form. In this frame, the only non-zero
components of the metric tensor are

g11 = g22 = g33 = 1; and g44 = �1: (6)

In terms of the conventionally defined electric and mag-
netic fields

E = (E1; E2; E3); B = (B1; B2; B3); (7)
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the EM field tensor is

fFijg =

0
BB@

0 B3 �B2 E1

�B3 0 B1 E2

B2 �B1 0 E3

�E1 �E2 �E3 0

1
CCA : (8)

It is straightforward with these expressions to verify that
Eq. 2 is equivalent to the equations

m0

d(�u)

dt
= eE+

e

c
u�B; m0c

2
d�

dt
= eu � E; (9)

where dt = �d� , and � =
�
1� u2=c2

�
�1=2

is in this case
the Lorentz factor.

1.3 Beam rest frame of fixed orientation
Consider a reference particle circulating around the ver-

tical axis X2 with a uniform angular velocity ! at a radius
R. Its time track ff ig may be described in the laboratory
frame in terms of the proper time �

f i(�) = (R cos �; 0; R sin �; 
�) ; (10)

where � = !
� is the revolution angle, 
 =
�
1� �2

�
�1=2

,
and �c = R! is the velocity. Introduce a rigid system
of coordinates (xi) which follows the reference particle in
its motion, so that the particle is constantly situated at the
origin of this frame of reference, and that the spatial axes
have constant orientations. The transformation connecting
the variables (X i) and (xi) are

X i = f i(�) + ��i�x
�; and x4 = �; (11)

where the check (�) denotes the inverse operation, the sum-
mation over � is on spatial components 1; 2; 3. The coef-
ficients �ij are obtained by means of successive infinitesi-
mal Lorentz transformations without rotation of the spatial
axes,[2]

f�ijg =

0
BB@

�11 0 �13 
� sin ~�
0 1 0 0

�31 0 �33 �
� cos ~�

� sin � 0 �
� cos � 


1
CCA ;

(12)
where �11 = cos � cos ~�+
 sin � sin ~�, �13 = sin � cos ~��

 cos � sin ~�, �31 = cos � sin ~� � 
 sin � cos ~�, �33 =
sin � sin ~� + 
 cos � cos ~�, and ~� = !
2� = 
�: The fact
that ~� differs from the revolution angle � by the Lorentz
factor 
 is the consequence of the Thomas precession.

To obtain the metric tensor of the rest frame, we need
to derive the relation between the line elements of the two
coordinate systems. Differentiation of Eq. 11 gives

dX i = ��i�dx
� +

�
f i(�)

d�
+

��i�(�)

d�
x�
�
d� � ��ijdx

j ;

(13)
where f�i

jg = f��ijg�1 is the transformation matrix be-
tween the line elements of the laboratory and the rest frame.
Let the prime (’) denote the rest frame. The metric tensor

fg0ijg of the rest frame is related to fgijg of the laboratory
frame by the relation g 0ij = ��li ��

m
j glm: Using the transfor-

mation matrix, the contravariant components of a vector
faig in the laboratory frame are transformed into the rest
frame as a

0i = �ika
k:On the other hand, the covariant com-

ponents of a tensor of rank 2, e.g. the EM field tensor, are
transformed as F 0

ij = ��li ��
m
j Flm. With these relations, the

equation of motion in the beam rest frame of fixed orienta-
tion can be obtained from Eq. 2 by an explicit evaluation.

1.4 Rotating beam rest frame
The equations of motion can be greatly simplified in

terms of the variables tangential and normal to the direc-
tion of the motion of the reference particle. We thus seek
for another transformation into the rotating beam rest frame
of which the orientation of the spatial axes are constantly
aligned to the radial (x), tangential (z), and vertical (y) di-
rection of the motion of the reference particle.

Define the rotating beam frame as the rest frame of
which the orientations of the spatial axes x and z rotate
relative to those of the fixed orientation x1 and x30
BB@

x
y
z
�

1
CCA =

0
BB@

cos ~� 0 sin ~� 0
0 1 0 0

� sin ~� 0 cos ~� 0
0 0 0 1

1
CCA
0
BB@

x1

x2

x3

x4

1
CCA : (14)

Express the electric and magnetic fields in the laboratory
frame in terms of the tangential component in z and the
normal component in x

Ex = E1 cos � +E3 sin �; Bx = B1 cos � +B3 sin �
Ey = E2; By = B2

Ez = �E1 sin � +E3 cos �; Bz = �B1 sin � +B3 cos �
(15)

The equations of motion can be obtained from Eqs. 2 and
3 by using Eq. 8 and the transformation relations as

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

m0

�

�
�x� 2
2! _z � 
4!2x

��m0�

2!2R(1� �) =

= e(1� �)E0

x +
e

�c

�
B0

z _y �B0

y( _z + 
2!x)
�� @V

@x
;

m0

�
�y = e(1� �)E0

y+

+
e

�c

�
B0

x( _z + 
2!x�B0

z( _x � 
2!z)
�� @V

@y
;

m0

�

�
�z + 2
2! _x� 
4!2z

�
=

= e(1� �)E0

z +
e

�c

�
B0

y( _x� 
2!z)�B0

x _y
�� @V

@z
;

(16)
where

E0

x = 
(Ex � �By); B0

x = 
(Bx + �Ey)
E0

y = 
(Ey + �Bx); B0

y = 
(By � �Ex)
E0

z = Ez ; B0

z = Bz

(17)

are the electric and magnetic fields after a Lorentz transfor-
mation without rotation, and V is the electric potential. For
particles of the same bunch, the potential VC describing the
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Coulomb interaction is

VC(x; y; z) =
X
j

e2p
(xj � x)2 + (yj � y)2 + (zj � z)2

(18)
where the summation is performed over all the other parti-
cles j and their image charges. The potential Vrf describ-
ing a radio-frequency (rf) electric field Es in the laboratory
frame satisfies

@Vrf (x; y; z)

@z
= �eEs (19)

Since the particle motion in the rest frame is non-
relativistic, the Lorentz factor � is simplified as

� � (1� �)�1; with � � �2
2
x

R
: (20)

Typically, the dimensionless quantity � is much smaller
than 1. The terms on the left hand side of Eq. 16 in-
clude the centrifugal and Coriolis forces. Those on the right
hand side are external EM forces and electrostatic Coulomb
forces. Again, since the particle motion is non-relativistic,
the magnetic force produced by the motion of the particles
is negligible compared with the electrostatic force.

2 STORAGE RING EXAMPLE
We consider the case that the beam is guided by a bend-

ing field B0 satisfying

eB0R = m0c
2�
; (21)

and focused by a quadrupole field of gradient B 1

Bx = B1y; By = B0 +B1x; Bz = 0; (22)
where B1 may vary for different piece of magnets, and the
field variation at the magnet end is neglected. The equa-
tions of motion is simplified by linearizing Eq. 168>>>><
>>>>:

m0

�
�x� 
2! _z

��m0

2!2R� = �e�
B1x� @V

@x
;

m0�y = e�
B1y � @V

@y
;

m0

�
�z + 
2! _x

�
= �@V

@z
:

(23)
Here, � has been assumed small compared with 1.

2.1 Dimensionless variables
Eq. 23 can be simplified in form when it is expressed

in terms of dimensionless variables. Let n � �B1R=B0

represent the strength of the focusing magnetic field, and

� � �
r0R

2=�2
2
�1=3

be a characterization of the inter-
particle distance in the presence of Coulomb interaction in
the storage ring, where r0 = e2=m0c

2 is the classical ra-
dius of the particle. Express the time t in unit ofR=�
c, the
spatial coordinates x, y, and z in unit of �, and the energy
in unit of �2
2e2=�. Eq. 23 becomes in these units8>>>><

>>>>:

�x� 
 _z + (�
2 + 1� n)x = �@V

@x
;

�y + ny = �@V

@y
;

�z + 
 _x = �@V

@z
:

(24)

Here, the dots denote differentiations with respect to the
normalized time t. The normalized Coulomb potential and
rf potential satisfy

VC(x; y; z) =
X
j

1p
(xj � x)2 + (yj � y)2 + (zj � z)2

(25)
and

@Vrf (x; y; z)

@z
= � eEs�

m0c2

�
R

��


�2

(26)

In the normalized units, the revolution period of the refer-
ence particle in the storage ring is 2�.

2.2 Hamiltonians
Using the canonical momentum (Px; Py; Pz), the parti-

cle system of Eq. 24 can be described by the Hamiltonian

H=
1

2

�
P 2

x + P 2

y + P 2

z

��
xPz+1
2

�
(1� n)x2 + ny2

�
+V

(27)
where the cross term �
xPz describes the coupling be-
tween the tangential and normal motion.

2.3 General case
The formalism presented in the previous sections can be

easily generalized to a storage ring that consists of both
bending and straight sections. Denote the guiding field and
bending radius in the bending section as B0 and R, respec-
tively. The equations of motion in the bending sections are
given by Eq. 24, while the system Hamiltonian is given by
Eq. 27. In the straight sections where the guiding field is
zero, the strength n of the focusing field can be defined by
normalizing the gradient B1 in the straight section to B0 in
the bending section. The Hamiltonian becomes

H =
1

2

�
P 2

x + P 2

y + P 2

z

�
+

1

2

��nx2 + ny2
�
+ V (28)

If the circumference of the ring is C, the revolution period
of the reference particle is C=R in the normalized unit.

3 DISCUSSIONS
The equations of motion derived for the beam rest frame

made possible direct utilization in storage ring analysis of
techniques like the molecular dynamics methods developed
typically for non-relativistic systems. These equations can
be easily generalized for storage rings containing multipole
magnets and multi-species of ions. [3]

Derivations presented in this paper are by-products of
a study on crystalline beams in collaboration with A.M.
Sessler and X-P. Li.
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