

Next-Generation Accelerator Facilities at Fermilab: Megawatt Upgrade of the NuMI Neutrino Beam

Robert Zwaska

10 August 2022

Outline

- Fermilab Science Overview
- Accelerator Complex
- NuMI Beam & Experiments (400 kW)
- ANU Upgrade (700 kW)
- PIP Upgrade (700+ kW)
- Megawatt Upgrade (1 MW)
- LBNF/DUNE (1.2 2.4 MW)
- PIP-II (1.2 MW + 1.6 MW)
- Proton Intensity Upgrade (PIU) Planning (xxx MW in several "spigots")
 - Options
 - Emerging Themes
 - R&D
 - Hooks into far-future Program
- Process going forward

Fermilab at a Glance

- America's particle physics and accelerator laboratory
- Operates the largest US particle accelerator complex
- ~1,900 staff and ~\$600M/year budget
- 6,800 acres of federal land
- Facilities used by 4,000 scientists from >50 countries

As Fermilab moves into its second 50 years, its vision remains to solve the mysteries of matter, energy, space, and time for the benefit of all.

The Fermilab research community

- More than 4,000 scientists in 55 countries use Fermilab and its particle accelerators, detectors and computers for their research
- More than 2,200 scientists from 175 U.S. universities and labs in 41 states
- Fermilab is attracting and training the next generation of a diverse HEP scientific workforce: 114 postdocs, 273 graduate students, 52 undergraduate interns
- Fermilab scientists also work at CERN, Sanford Underground Research Facility (SURF), SNOLAB, Cerro Tololo Inter-American Observatory, South Pole Telescope, NOvA Ash River Laboratory, Matter-wave Atomic Gradiometer Interferometric Sensor

Fermilab is following the P5 strategy

- The flagship projects LBNF/DUNE/PIP-II, HL-LHC anchor the program but take many years to realize
- · Fermilab simultaneously pursues a broad research effort in HEP
- The goal is a continuous stream of exciting results that attract/build/retain a diverse user community and scientific workforce
- Fermilab projects drive funding growth for HEP

Fermilab Accelerator Complex

and a second second

Advanced Accelerator Test Area

Proton Beamline

Accelerator Technology Complex

Illinois Accelerator Research Center

Superconducting Linac (Part of proposed PIP II project)

Facility

Test Beam

Linac

Muon Area.

Booster Neutrino Beam

Booster.

Neutrino Beam

Neutrino Beam

To South Dakota (Part of proposed LBNF project)

To Minnesota

Main Injector and Recycler

Tevatron (Decommissioned)

> Protons Neutrinos Muons Targets R&D Areas

1

The NuMI Facility: "Neutrinos (v -> Nu) at the Main Injector"

- Intense muon-neutrino beam directed towards Minnesota
- Main Injector supplies 50–70e12 120GeV protons every 1.2 seconds
 - Designed for 400 kW, operated up to 900 kW
 - Multiple upgrade projects
- Each pulse produces about $2x10^{14}$ v $_{\mu}$
 - ~ 20,000,000 Pulses per year
 - Direct beam 3° down
- Commissioned in 2005, expect to run to ~ 2027

Multiple Experiments in the NuMI Beam

Long-baseline oscillation experiments The MINOS+ Concept Long-baseline neutrino oscillation experiment Measure NuMI Neutrino beam energy and flavor composition with two detectors over 735 km L/E ~ 500 km/GeV Near Detector at Fermilab Far Detector at Soudan Underground Lab, MN Compare Near and Far measurements to study neutrino mixing 10 km Fermilab Ash River Laboratory NOvA is a designed to answer the next generation of vquestions Mass Hierarchy • v_3 dominant coupling $(\theta_{23} \text{ octant})$ • CPV in ν sector Far Detector (14 kT 2012-2014 Tests of 3-flavor mixing • Supernovae ν 's A.Norman, v 2014

Neutrino scattering experiments

ArgoNeuT in the NuMI beam line

- First LArTPC in a low (1-10 GeV) energy neutrino beam.
- Acquired 1.35 × 10[∞] POT, mainly in v_µ mode.
- · Designed as a test experiment.
- But obtaining physics results!
 ArgoNeuT tech-paper:
 JINST 7 (2012) P10019

The MINERvA detector provides a fine-grained view of neutrino-nucleus interactions

Fermilab

R. Zwaska | Next-Gen Accelerators at Fermilab | NAPAC 2022

2022.08.10

Neutrino oscillations: Big picture questions

- What is the origin of neutrino mixing? Is there an underlying flavor symmetry, and how is it broken?
- What is the origin of the neutrino masses? Why are the neutrinos so light?
- Is leptogenesis a viable explanation of the baryon asymmetry of the Universe?
- How must the Standard Model be modified for neutrinos? Is the vSM complete? Are there additional neutrinos?

9

Neutrino oscillations: current status

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta_{\rm CP}}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{\rm CP}}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Measure neutrino oscillations precisely, including $v_u \rightarrow v_e$ that is sensitive to CP violation
- Test the three-flavor paradigm \rightarrow overconstrain the system

• Current precision:

- $\theta_{13} \sim 2.7\%$ (reactor $\overline{v_e}$ disappearance)
- $|\Delta m_{32}^2| \sim 3\%$ (reactor \overline{v}_e
 - disappearance and accelerator v_{μ} disappearance), mass ordering unknown
- $\sin^2\theta_{23} \sim 0.5 \pm 0.1$ (atmospheric and accelerator v_{μ} disappearance + v_e appearance)
- δ_{CP} unknown

Why a Beam? – Controlled Laboratory Experiment

- Natural sources exist but they are very weak and not necessarily well understood
 - Solar and atmospheric neutrinos were only understood once oscillations were established and well measured
 - Moving from observation to experiment
 - Supernovae are hard to come by
- Artificial beams are controlled and intense ⇒ Precision!
 - Decide when, where, and how the beam is generated
 - Detectors are placed strategically
 - Beams can be controlled with precision vital as measurements approach 1%
- Applications:
 - Today neutrino oscillation is the first focus
 - Probe of nuclear structure
 - Observation of the neutral current
 - Demonstration of neutrino flavor (muon, tau)
 - Measurement of weak mixing angle

Pion Decay!

$$\pi^+ \to \mu^+ \nu_{\mu}$$

- Most all of our neutrinos come from pion decays
 - Convert the kinetic energy of the accelerator beam into new massive particles (pions), which decay to neutrin0s
- Two quarks, bound together by gluons, convert into a neutrino and muon

‡ Fermilab

🛟 Fermilab

Defining Characteristics of Long Baseline Beams

- Proton Beams: synchrotron based, ~ 1 MW
 - High Stored Energy: ~ 1 MJ
 - Small Beam Spot: 1 few mm
 - High Proton Energy: 30-120 GeV
 - Single-turn extraction, long cycle time: 1 few seconds

🛠 Fermilab

- Pion Focusing: Pulsed horns
 - Horns more efficient than quads
 - High currents: few hundred kA
- Large Decay volume
 - Meters in cross-section
 - 100s of meters in length
- Beam radiation dispersed over extended area
 Tritium, activation, corrosion, cooling

NOvA Accelerator & NuMI Upgrades (ANU): the 700 kW Upgrade

- Previous Stacking operation (~ 380 kW in 2011):
 - H^{-} linac at ~35 mA
 - H⁻ stripping into Booster 10-11 turns: 4.3e12 protond
 - 11 pulses (at 15 Hz) into Main Injector with RF slip stacking
 - Ramp to 120 GeV at 204 GeV/s and extract to NuMI target

Increasing Beam Power to 700 kW

🚰 Fermilab

The installation of a direct injection line from the Booster to the Recycler to eliminate Main Injector loading time was the key component of the "ANU" improvement campaign for NOvA (400 kW->700 kW) available by 2015

"slip-stacking"

cleverly gets around

Goals for the Proton Improvement Plan (2011-2018)

- The *Proton Improvement Plan* should enable Linac/Booster operation capable of
 - Delivering 2.3E17 protons/hour (at 15 Hz) x2 previous

while

- Maintaining Linac/Booster availability > 85%, and
- Maintaining residual activation at acceptable levels

and also ensuring a useful operating life of the linac through 2023, and Booster through 2030 or later

The scope of the *Proton Improvement Plan* included

- Upgrading (or replacing) components to increase the Booster repetition rate
- Replacing components that have (or will have) poor reliability
- Replacing components that are (or will soon become) obsolete
- Studying beam dynamics to diagnose performance limitations
- Implementing operational changes to reduce beam loss

Booster Overview

- H- ions are stripped and multi-turn injected onto the Booster
- Protons are accelerated from 400 MeV to 8 GeV in 33 msec
- Fast cycling synchrotron
 - Fast magnet ramping
 - Frequency of 15 Hz
- Single turn extraction
- Many pulsed devices requiring upgrade

Booster			
Circumference (m)	474		
Harmonic Number	84		
Kinetic Energy (GeV)	0.4 - 8		
Momentum (GeV/c)	0.954 - 8.9		
Revolution period (µsec)	$\tau_{(inj)} 2.77 - \tau_{(ext)} 1.57$		
Frequency (MHz)	37.9 - 52.8		
Batch size	4.5 E12		
Focussing period	FDooDFo (24 total)		
Combined Function Magnets			

No failures after initial phase...

but 8 spares have been refurbished as part of PIP...

Booster loss and Linac laser notch

- Doubling the beam repetition rate requires cutting the losses per Booster cycle in half
- Addressing each of the three main areas of Booster beam loss:
 - Injection
 - Notching the beam to create a gap for extraction kickers to fire
 - Transition, related to RF during acceleration
- Phased improvements to notch creation
 - New cogging system which allowed notching at 400 MeV instead of 700 MeV \rightarrow lower energy losses into an absorber
- Final phase was a laser notcher in Linac MEBT
 - Laser Neutralization of H⁻ with zero space
 - Unique laser with micro, meso, and macro timescales, and vertical spatial profile

Optical cavity (attached end of RFQ)

Laser profile

Booster PIP - Refurbishment of 40 year old cavities

2022.08.10 R. Zwaska | Next-Gen Accelerators at Fermilab | NAPAC 2022

25

Booster 15 Hz – A significant achievement for PIP/FNAL

File Options Help 999999900000 999999900000 22999999999000000 229999999990000DD 22

C Rooster Events

TLG with 13 (fixed target event) beam events & 2 pre-pulses, \$17 (Booster event) then replaced the pre-pulses for full **15** Hz beam operation – record intensity **>2.1E17/hr** !

\$19 (NoVA event) or \$1D Boone Event) cycles at reduced intensity allowed for 15 Hz beam and some overhead

> PIPs success led to the possibility to increase Main Injector beam to close to 1 MW with modest upgrades in other parts of the accelerator chain

NuMI Megawatt Accelerator Improvement Project (AIP): 2018-2021

- Originally designed for 400 kW beam power, then upgraded to 700 kW with NOvA/ANU
- Megawatt AIP (Accelerator Improvement Project)
 - Upgrade of target, horns, and supporting systems to be capable of accepting 1 MW beam power through 2025
 - Completed in 2021 after 3 annual accelerator shutdowns to replace components
 - Record 893 kW beam power achieved in April 2022

	NuMI Design	NOvA	1 MW upgrade
Proton beam energy	120 GeV		
Beam power (kW)	400	700	1 MW
Energy Spectrum	Low Energy Medium Energy		
Cycle time (s)	1.87	1.33	1.2
Protons per spill	4.0 x 10 ¹³	4.9 x 10 ¹³	6.5 x 10 ¹³
Spot Size (mm)	1.0	1.3	1.5
Beam pulse width		10 microse	с

🗲 Fermilab

NuMI AIP – 1 MW Target Upgrade

- Core redesigned for increased beam spot size from original 1.3 mm to 1.5 mm
 - Graphite fins width increased from 7.4 mm to 9 mm
 - Winged fins added upstream in case of beam missteering
- Cooling loop added on downstream Beryllium window

Former Be window design temperature immediately after beam spill

1 MW Be window design with cooling loop temperature immediately after beam spill

🚰 Fermilab

NuMI AIP – 1 MW Target Upgrade

- Baffle core increased bore size from 13 mm to 15 mm
 - Integrated in target carrier
- 1 MW target successfully installed during 2019 accelerator summer shutdown

1 MW target completed

1 MW target lifted during installation

NuMI AIP – 1 MW Horn Upgrade

- Design changes to increase cooling to keep stripline < 100 °C
 - Re-design of air diverter at base of stripline for improved air flow
 - T-Block air cooling
- Stripline modified for 1 MW
 - Changed material from AI 6101-T61 to 6013-T651 in key sections
 - Higher yield strength and increased fatigue life

NuMI 1 MW horn stripline

Horn stripline air diverter

T-block air diverter

NuMI AIP – 1 MW Horn Upgrade

- Upgraded Horn 1 installed during 2020 summer shutdown
- Horn 2 also replaced due to water leak
 - 12 year/100 million pulses lifetime
- Accompanying Horn 1 module rebuilt and replaced
 - Drive mechanisms for horn positioning no longer functional

Horn 1 and module test fitment

PH2-02 removed after 12 years of service

1 MW PH1-05 being installed

NuMI Target Systems Accelerator Improvement Plan (AIP): Target Station Upgraded for 1-MW Beam Operation

Objective reached: capable of accepting 6.5E13 protons/spill at 120 GeV, 1.2 sec cycle time **Project scope:** improve and replace Target Hall components / support systems

Tasks completed in 2019 – 2022

Upgrade for 1 MW		Reliability / Lifetime Extension	
MARS / FEA simulations for all beamline components	٠	Horn 1 module drive mechanism change	
. MW target	٠	Absorber intermediate cooling system H	

- 1 MW horn 1 ٠
- Stripline air diverter T-block & HVAC ductwork •
- Target & Horn 1 RAW system •
- Target chase cooling and air handling system •

- ingeout
- m HX
- MI-65 condensate rerouting
- Target chase supplemental shielding ٠
- Hadron monitor and gas system •
- Target module drive mechanism
- MINOS surface dry cooler

DUNE Science Objectives

Building for Discovery

Origin of matter. Investigate leptonic CP violation. Are neutrinos the reason the universe is made of matter?

Neutron star and black hole formation. Ability to observe neutrinos from supernovae events and perhaps watch formation of black holes in real time.

Unification of forces. Investigate nucleon decay, advance unified theory of energy and matter.

The LBNF/DUNE project will be the first internationally conceived, constructed, and operated mega-science project hosted by the Department of Energy in the United States" – DOE

Exquisite Measurement Possibilities with Long Baseline and Broad Beam

- DUNE is designed to resolve degeneracies by measuring flavor transitions as a function of energy over more than a full oscillation period
- DUNE will determine the mass ordering and measure δCP , regardless of the true values
- Expect the unexpected: DUNE is robust against systematic effects and for resolving deviations from vSM

The LBNF Beam

Facility designed for initial beam power of 1.2 MW, upgradeable to 2.4 MW

🗳 🛱 Fermilab

Section View of Target Complex – Target Hall

LBNF Development in AD

- Prototype Horn has been welded and assembly started in 2022
- Major procurements for horns to begin in 2022
- UKRI RAL developing target prototypes to be integrated at Fermilab
- Major new horn teststand to be bult 2022-2024 in existing technical space (MI-8)
- Numerous persons working on the project
 - Design
 - Radiation Modelling
 - Prototyping
 - Project Management

Definition of LBNF/DUNE Phases

- Originally described in the 2014 P5 plan
- Phase I
 - Accomplished with PIP-II, LBNF/DUNE-US, and DUNE International Partners
 - Meets P5 minimum requirements to proceed by 2035 timeframe
 - Same project scope as proposed at CD-1R in July 2015
- Phase II
 - Increased mass at Far Detector
 - More Capable Near Detector (MCND)
 - Increased beam power by Booster replacement

	LBNF/DUNE-US Project + DUNE Int'l Project	
Capability Description	Phase I	Phase II
Beamline		
1.2MW (includes 2.4MW infrastructure)	Х	
2.4MW		X ¹
Far Detectors		
FD1 – 17 kton	Х	
FD2 – 17 kton	Х	
FD3		Х
FD4		Х
Near Detectors ²		
ND Lar	Х	
TMS	Х	
SAND	Х	
MCND (ND GAr)		Х

Note 1: requires upgrades to LBNF neutrino target and upgrades to Fermilab accelerator complex. The LBNF facility is built to support 2.4MW in Phase I.

Note 2: Near Detector Subproject threshold scope provides "day 1" requirements to start the DUNE experiment

Proton Improvement Plan II (PIP-II)

- Increase Main Injector beam power to 1.2 MW.
 - Replace the existing 400 MeV linac with a new 800 MeV superconducting linac => increase in Booster intensity.
 - Provide a platform to increase LBNF power to 2.4 MW
 - Provide path for a 100 kW Mu2e-II
 - Provide capability for 1.6 MW at 800 MeV, CW beam
 - Platform for high duty-factor / power operations to multiple experiments

PIP-II Linac & Upgrades (1.2 MW power on target)

Project started in 2016 (CD0) First beam in Booster: 2028 (plan) MI 1.2 MW beam on target: 2031 (projection)

800 MeV H- linac • Warm Front End • SRF section Linac-to-Booster transfer line • 3-way beam split Upgraded Booster • 20 Hz, 800 MeV injection

• New injection area

Upgraded Recycler & Main Injector

• RF in both rings

Conventional facilities

- Site preparation
- Cryoplant Building
- Linac Complex
- Booster Connection

Fermilab

Critical Issue: Space Charge Limit

• Injected intensity is limited by the space charge tune-shift, which can drive harmonic instabilities.

 Thus, the maximum injected charge grows rapidly with increasing energy

 $N_{max} \propto \beta \gamma^2$ without painting $\propto \beta^2 \gamma^3$ painted to fill physical aperture

> doesn't include improvement of going to uniform distribution with painting

PIP-II Project construction begins!

- PIP-II received DOE CD-3 approval for start of construction/execution on April 18
 - Linac complex RFP issued
- Front end of PIP-II linac constructed and successfully tested with beam
- PIP-II cryoplant building 98% complete
- HB650 prototype cryomodule in assembly first of its kind

PIP-II is the first particle accelerator built in the U.S. with significant international contributions

LBNF/DUNE/PIP-II in-kind contributions \$1.1B with growth potential

- LBNF/DUNE-US
 - \$262M in-kind contributions to LBNF (does not include private @ \$70M or State of SD @ \$93M to support SURF)
 - \$310M in contributions to DUNE detectors
 - \$84M in CERN contributions to protoDUNE efforts (does not include French contributions to protoDUNE R&D)
- Additionally, LBNF powered by PIP-II, which has secured \$310M in international contributions

Fermilab

In-kind contributions supported by 10 Government-to-Government agreements and 17 I-CRADAS

Booster Replacement / Proton Intensity Upgrade (PIU)

Booster replacement scenarios are developed informed by studies from the past and input to Snowmass/P5

- Cost-effective and fastest path to increased power to 2.4MW for LBNF.
- Capture options for additional medium and small-scale experiments.
- Enable long-term vision.

Why Replace the Booster?

- 2014 P5 Recommendation: Provide 2.4 MW to DUNE
 - Now ~ 0.9 MW max
 - With PIP-II can reach ~ 1.2 MW
 - Main bottleneck is the Booster synchrotron
 - Intensity can be improved but not enough to reach 2.4 MW
- A lot of work has been done already
 - Luciano Ristori presentation to PAC June 2021
 - White Papers for Snowmass describe design options and potential for rich low energy science program
 - Users meeting "Future Accelerators for Fermilab Proton Complex" June 2022 Jeff Eldred

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector. In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS. In 2018, S. Nagaitsev and V. Lebedev: updated version of ICD-2. In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design. In 2021, Committee for Fermilab Booster Upgrade an integrated design effort: Science Working Group chaired by R. Harnik "Physics Opportunities for the Fermilab Booster Replacement" Accelerator Working Group chaired by M. Syphers "An Upgrade Path for the Fermilab Accelerator Complex" (RCS Scenario) "An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"

Experiment/Physics Possibilities

Range of experiments could be performed with different iterations of the PIU

Experiments grouped into physics categories that they service (multiply)

Experiment	Dark Sectors	V Physics	CLFV	Precision tests	R&D
Lepton flavor violation: µ-to-e conversion					
Lepton flavor violation: µ decay					
PIP2-BD: ~GeV Proton beam dump					
SBN-BD: ~10 GeV Proton beam dump					
High energy proton fixed target					
Electron missing momentum					
Nucleon form factor w/ lepton scattering					
Electron beam dumps					
Muon Missing Momentum					
Muon beam dump					
Physics with muonium					
Muon collider R&D and neutrino factory					
Rare decays of light mesons					
Ultra-cold neutrons					
Proton storage ring for EDM and axions					
Tau neutrinos					
Proton irradiation facility					
Test-beam facility					

(electrons)

Booster Replacement Era Proposed Experiments (SM whitepapers)

Proton Storage Ring: EDM and Axion Searches Predit Dark I Physics with Muonium Predit Nucleon Electromagnetic Form Factors from Lepton Scattering Neutr Rare Decays of Light Mesons (REDTOP) Predit Ultra-cold Neutron Source for Fundamental Physics Predit	ecision tests, ark Matter ecision tests sutrino ecision tests	proton proton (producing surface muons) electron or proton (producing muone)	0.7 GeV/c beam momentum 0.8 GeV	1e11 polarized protons per fil	Fill the ring every 1000s	1998 - Contra 1997 - Contra 19	4
Physics with Muonium Precis Nucleon Electromagnetic Form Factors from Lepton Scattering Neutr Rare Decays of Light Mesons (REDTOP) Precis Ultra-cold Neutron Source for Fundamental Physics musics	ecision lests sutrino ecision lests	proton (producing surface muons) electron or proton (producing muons)	0.8 GeV	2		no	
Nucleon Electromagnetic Form Factors from Lepton Scattering Neutr Rare Decays of Light Mesons (REDTOP) Proci- Ultra-cold Neutron Source for Fundamental Physics	sutrino ecision tests	electron or proton (producing muons)		1e13pm1 POT per second	CW	no	Electron beam
Rare Decays of Light Mesons (REDTOP) Precis	ecision tests		0.85 GeV to 2 GeV	1 nA to 10 microA for electrons, 10 ⁴ 7 to 10 ⁴ 8 per second for muons	A continuous or pulsed structure (ideally with a duty factor of 1% or larger) should be sufficient	no	
Ultra-cold Neutron Source for Fundamental Physics		proton	1.8-2.2 GeV (Run I), 0.8- 0.92 (Run II), 1.7 (Run III)	0.03-0.05 (Run I), 200 (Runs II and III)	CW, slow extraction for Run I	no	
Experiments, Including Neutron-Anti-Neutron Oscillations	ecision tests	proton	0.8-2	1,000	quasi-continuous	по	~2 GeV CW-capable beam
CLFV with Muon Decays CLFV	JFV	protan	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	Muon Campus	
Mu2e II CLFV	JFV	proton	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Rexible time structure and minimal pulse-to-pulse variation	no	
Fixed Target Searches for new physics with O(1 GeV) Proton Dark Beam Dump Neutr	ark Sector, sutrino	proton	0.8 to 1.5 GeV	100 or more	<o(1 <o(30="" for="" measurements,="" micro="" neutrino="" ns)="" pulse="" pulse<br="" s)="" width="">width for dark matter searches, 10^{-5} or better duty factor</o(1>	no	~2 GeV pulsed beam from
PRISM-like Charged Lepton Flavor Violation CLFV	JFV	proton	1-3 GeV	up to 2 MW	15ns pulses at a rep rate of about 1 kHz	no	storage ring ~1MW
Electron Missing Momentum (LDMX) Dark	ark Sector	electron	~3 GeV to ~20 GeV	O(1 electron per RF bucket at 53 MHz)	CWish	no	<u> </u>
Electron Beam Dumps Dark	ark Sector	electron	few GeV	10 ⁴ (20) electrons on target over the experiment al runtime	Pulsed beam (duly factor not specified)	no	
Proton Irradiation Facility R&D	sD.	proton	Energy is not very important	1e18 protons in a few hours	Pulsed beam (duty factor not specified)	no	~8 GeV pulsed beam ~1MW
SBN Neutr	sutrino	proton	8	32	20Hz	BNB	o oct paloca scall inter
Mu2e CLFV	FV	proton	8	8	<10 ⁻ (-10) extinction	Muon Campus	
Fixed Target Searches for new physics with O(10 GeV) Proton Dark 3 Beam Dump Neutr	ark Sector, autrino	proton	8	up to 115	Beam spills less than a few microsec with separation between spills greater than 50 microsec	BNB	
Muon beam dump Dark:	ark Sector	proton (producing muons)	3 GeV muons	3e14 muons in total on target for the whole run	cw	Muon Campus	120 Col/ Class astrontion on
Muon Collider R&D and Neutrino Factory R&D	\$D	proton	5-30GeV	1e12 to 1e13 protons per bunch	10 - 50 Hz rep rate and bunch length 1-3 ns	no	120 Gev Slow extraction or
Muon Missing Momentum Dark	ark Sector	proton (producing muons)	few 10s of GeV	10^(10) muons per experimental runtime	Pulsed beam (duty factor not specified)	no	LBNF beam
High Energy Proton Fixed Target Dark 3 Neutr	srk Sector, sutrino	proton	O(100 GeV)	1e12 POT/s therefore ~20 KW	OV via resonant extraction. "IF we could up the duty factor that woul dbe even better"(?)	Switchyard	
Test-Beam Facility R&D	in.	proton	120, lower energies would also be beneficial	10 to 100 kHz on the testing apparatus	Pulsed beam (duty factor not specified)	no	Adapted from Jeff Eldred's
Tau Neutrinos Neutr	50						· · · · · · · · · · · · · · · · · · ·

8-GeV Linac Program (MI program)

Performance Parameter	PIP	PIP-II	BRL	Unit
Linac Beam Energy	400	800	8000	MeV
Linac Beam Current (chopped)	25	2	2	mA
Linac Pulse Length	0.03	0.54	2.2	ms
Linac Pulse Repetition Rate	15	20	20	Hz
Linac Upgrade Potential	N/A	CW	CW	I '
8 GeV Protons per Pulse (extracted)	4.2	6.5	27.5	10 ¹²
8 GeV Pulse Repetition Rate	15	20	20	Hz
Beam Power @ 8 GeV	80	166	700	kW
8 GeV Beam Power to MI	50	83-142*	176-300	kW
Beam Power to 8 GeV Program (pulsed mode)	30	83-24*	500-375	kW
Main Injector Protons per Pulse (extracted)	4.9	7.5	15.6	10 ¹³
Main Injector Cycle Time @ 120 GeV	1.33	1.2	1.2	s
Main Injector Cycle Time @ 60 GeV	N/A	0.7	0.7	s
Beam Power @ 60 GeV	N/A	1	2.15	MW
Beam Power @ 120 GeV	0.7	1.2	2.5	MW

Injects at 20Hz into MI over six 2.2ms pulses

*Total PIP-II with Booster 8 GeV power is 166 kW.

Section	Length	Bending field or RF frequency	Total bending angle or Linac mode	Cavities/magnets/ cryomodules	Cryomodule length
1 GeV transport	40 m	0.277 T	-45°	*	<u> </u>
1 → 3 GeV Linac	240 m	650 MHz	CW	120/20/20	9.92 m
3 GeV bend	200 m	0.13 T	105°		
3 → 8 GeV Linac	390 m	1300 MHz	Pulsed, 10 Hz	224/28/28	12.5 m
8 GeV injection		0.055 T			

8-GeV Linac Program (8-GeV program)

Performance Parameter	PIP	PIP-II	BRL	Unit	
Linac Beam Energy	400	800	8000	MeV	
Linac Beam Current (chopped)	25	2	2	mA	
Linac Pulse Length	0.03	0.54	2.2	ms	
Linac Pulse Repetition Rate	15	20	20	Hz	
Linac Upgrade Potential	N/A	CW	CW		
8 GeV Protons per Pulse (extracted)	4.2	6.5	27.5	1012	
8 GeV Pulse Repetition Rate	15	20	20	Hz	0
Beam Power @ 8 GeV	80	166	700	kW	0-
8 GeV Beam Power to MI	50	83-142*	176-300	kW	_2լ
Beam Power to 8 GeV Program (pulsed mode)	30	83-24*	500-375	kW	
Main Injector Protons per Pulse (extracted)	4.9	7.5	15.6	10 ¹³	
Main Injector Cycle Time @ 120 GeV	1.33	1.2	1.2	s	
Main Injector Cycle Time @ 60 GeV	N/A	0.7	0.7	S	
Beam Power @ 60 GeV	N/A	1	2.15	MW	
Beam Power @ 120 GeV	0.7	1.2	2.5	MW	

SeV pulsed s -> 2ms

*Total PIP-II with Booster 8 GeV power is 166 kW.

Section	Length	Bending field or RF frequency	Total bending angle or Linac mode	Cavities/magnets/ cryomodules	Cryomodule length
1 GeV transport	40 m	0.277 T	-45°		
1 → 3 GeV Linac	240 m	650 MHz	CW	120/20/20	9.92 m
3 GeV bend	200 m	0.13 T	105°		
3 → 8 GeV Linac	390 m	1300 MHz	Pulsed, 10 Hz	224/28/28	12.5 m
8 GeV injection		0.055 T			

RCS Scenarios

"Design Considerations for Fermilab Multi-MW Proton Facility" white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 { m GeV}$	$2 \mathrm{GeV}$	$2 { m GeV}$
Minimum Linac Current	$2 \mathrm{mA}$	2 mA	$2 \mathrm{mA}$
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	8 GeV	$8 {\rm GeV}$	8 GeV
RCS Intensity	6.5 e12	26 e12	37 e12
RCS Circumference	474.2 m	$553.2 \mathrm{~m}$	$570 \mathrm{m}$
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Accumulation Technique	Slip-stacking	Conventional	Conventional
8 GeV Accumulation	Recycler	Recycler	Main Injector
Available RCS Power	80 kW	170 kW	750 kW
Main Injector Intensity	80 e12	156 e12	185 e12
Main Injector Cycle Time	1.2 s	1.2 s	1.4 s
Main Injector Power (120 GeV)	$1.2 \ \mathrm{MW}$	$2.4 \mathrm{MW}$	$2.4 \mathrm{MW}$
Upgraded Main Injector Power		3.3 MW	4.0 MW

RCS Scenarios (ramp rate and 8 GeV program)

<u>"Design Considerations for Fermilab Multi-MW Proton Facility"</u> white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 \mathrm{GeV}$	2 GeV	2 GeV
Minimum Linac Current	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	8 GeV	8 GeV	8 GeV
RCS Intensity	$6.5 \ e12$	26 e12	37 e12
RCS Circumference	474.2 m	553.2 m	570 m
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Number of Batches Accumulation Technique	12 Slip-stacking	6 Conventional	5 Conventional
Number of BatchesAccumulation Technique8 GeV Accumulation	12 Slip-stacking Recycler	6 Conventional Recycler	5 Conventional Main Injector
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS Power	12 Slip-stacking Recycler 80 kW	6 Conventional Recycler 170 kW	5 Conventional Main Injector 750 kW
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector Intensity	12 Slip-stacking Recycler 80 kW 80 e12	6 Conventional Recycler 170 kW 156 e12	5 Conventional Main Injector 750 kW 185 e12
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector IntensityMain Injector Cycle Time	12 Slip-stacking Recycler 80 kW 80 e12 1.2 s	6 Conventional Recycler 170 kW 156 e12 1.2 s	5 Conventional Main Injector 750 kW 185 e12 1.4 s
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector IntensityMain Injector Cycle TimeMain Injector Power (120 GeV)	12 Slip-stacking Recycler 80 kW 80 e12 1.2 s 1.2 MW	6 Conventional Recycler 170 kW 156 e12 1.2 s 2.4 MW	5 Conventional Main Injector 750 kW 185 e12 1.4 s 2.4 MW

ICD-2 RCS is more cost-effective, BSR is more ambitious

BSR delivers more for 8 GeV, compatible with a second LBNF target station

RCS Scenarios (required rings)

<u>"Design Considerations for Fermilab Multi-MW Proton Facility"</u> white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 { m GeV}$	2 GeV	$2 \mathrm{GeV}$
Minimum Linac Current	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	$8 { m GeV}$	8 GeV	8 GeV
RCS Intensity	6.5 e12	26 e12	37 e12
RCS Circumference	474.2 m	553.2 m	570 m
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Accumulation Technique	Slip-stacking	Conventional	Conventional
8 GeV Accumulation	Recycler	Recycler	Main Injector
Available RCS Power	80 kW	170 kW	750 kW
Main Injector Intensity	80 e12	156 e12	185 e12
Main Injector Cycle Time	1.2 s	1.2 s	1.4 s
$\ \text{ Main Injector Power (120 GeV)} $	$1.2 \ \mathrm{MW}$	2.4 MW	2.4 MW
Upgraded Main Injector Power		3.3 MW	4.0 MW

ICD-2 scenario require Recycler (or similar), maintains RR experimental program.

BSR scenario requires either an Accumulator Ring or 5 mA linac upgrade.

Proposed PIP-II Accumulator Ring (PAR)

Features:

- Proposed 0.8-1.0 GeV proton storage ring.
- 474m in the form of a folded figure 8.
- Does not interfere with PIP-II commissioning.

Benefits:

- 100 kW Dark Sector Program.
- Enables 1 GeV upgrade of Booster injection.

Snowmass white papers PAR, PIP2-BD

Emerging Themes for PIU / Design Options / R&D

- At least one ring will certainly be necessary
 - Accumulator, compressor, and/or RCS
 - Many experiments require short bunches. The CW beam must be extensively reformatted to be useful.
 - Muon Collider future compatibility requires the compression of ~ 10^7 linac microbunches into a single 1-2 ns bunch
 - Need to develop beam dynamics, RF Gymnastics, and other issues
- H- Stripping becomes a challenge at high rate (and low linac current)
 - Motivates Laser Stripping, foil development
- Linac Current increase is potentially very useful
 - Stripping, injection, experiments
- MI Cycle Time could be further reduced for conceivably 4+ MW
- Energy Consumption / Sustainability must be considered
- Higher energy injection into the MI could allow higher emittance beams, avoiding transition

35 Fermilab

Path Forward for Upgrades

- PIP-II is in construction complete ~ 2028
- LBNF has started construction complete ~ 2031
- Planning for Booster Replacement / Proton Intensity Upgrade (PIU)
 - Snowmass Process 2020-22 (fall) Catalog many of the community proposals for all particle physics, including accelerators
 - **P5 Process** 2022-23 HEPAP (DOE & NSF) panel prioritizes particle physics projects

35 Fermilab

- Follow-on panels to P5 (e.g. NAS, AARD) 2023-24
- **DOE issues CD-0** within the above process, and formal design begins
- Alternatives chosen at CD-1
- Ideally operational in the middle of the 2030s
- In parallel, a possible instrumentation build-out of PIP-II:
 - Individual experiments, accumulator rings, beam delivery, targets stations, ...

Timeline of High-Power Target Stations

Station	Design Power	Period	Comments
BNB	30 kW	2002 – 2027 (?)	
NuMI	700 kW – 1 MW	2004 – 2027 (?)	Megawatt Upgrade Complete.
AP-0 / Muon g-2	20 kW	2017 – 2023 (?)	Using legacy targets & lenses from Antiproton Source.
Mu2e	8 kW	2025 (?) -	Very challenging high-Z, radiatively cooled target, even with low power.
LBNF/DUNE	1.2 MW	2029 (?) -	Challenging, but achievable devices. Production may be greatest challenge.

Three operating stations, two in various stages of design & construction

Timeline of High-Power Target Stations with PIP-II and Successor

Station	Design Power	Period	Comments
BNB	30 kW	2002 – 2027 (?)	
NuMI	700 kW – 1 MW	2004 – 2027 (?)	Megawatt Upgrade in progress.
AP-0 / Muon g-2	20 kW	2017 – 2023 (?)	Using legacy targets & lenses from Antiproton Source.
Mu2e	8 kW	2025 -	Very challenging high-Z, radiatively cooled target, even with low power.
Mu2e-II	100 kW	2033 (?) -	Much more challenging than Mu2e
LBNF/DUNE	1.2 MW	2029 (?) -	Challenging, but achievable devices. Rate of production may be greatest , challenge.
LBNF2	2.5 MW	2035 (?) -	Patenging, Enabled by PIU
800 MeV Exp't(s)	1.6 MW	2029 (?) -	Enabled by PIP-II
2 GeV Exp't(s)	4 MW (?)	2035 (?) -	Enabled by PIU
8 GeV Exp't(s)	0.8 – 16 MW (?)	2035 (?) -	Enabled by RUJA CONVATA
			Fer

High Power Targetry (HPT) R&D is Vital to Delivering Performance at Major Facilities

Recently, major accelerator facilities have been limited in beam power not by their accelerators, but by target survivability concerns

- NuMI-MINOS, FNAL (2010-11)
 - Reduced beam power (-10% to -40%)
 - Target failures attributed to faulty welds
- MLF, J-PARC (2015-16)
 - Early replacement of target
 - Limited to 200 kW when resuming ops

MINOS NT-01 target (FNAL)

58

- Reduced beam power (-15%) frequently in 2013-14
- Target vessel failures attributed to faulty welds and dynamic stresses

MINOS NT-02 target failure: radiationinduced swelling (FNAL)

Be window embrittlement (FNAL)

SNS target vessel (ORNL)

NOvA MET-01 target fin fracture (FNAL)

Summary

- Fermilab has successfully delivered several modest projects to significantly increase beam power:
 - NOvA/ANU -> 700kW
 - PIP -> 700+ kW and better throughput / reliability
 - NuMI Megawatt AIP -> 1 MW capability
- Major Projects are underway
 - LBNF 1.2 2.4 MW capability
 - PIP-II -> 1.2 MW + 1.6 MW
- Planning has begun for a successor project to PIP-II: Booster Replacement or PIU
 - Fixed purpose is providing 2.4 MW to LBNF/DUNE
 - Alternatives of Linac Extension + RCS or 8 GeV Linac
 - Many potential experimental users of 1, 2, 8, 120 GeV megawatt-class beams

Next-Generation Accelerator Facilities at Fermilab: Megawatt Upgrade of the NuMI Neutrino Beam

Robert Zwaska

10 August 2022

Target Issues

- Common failure mode was water ۰ cooling
 - Also, an issue for horns
 - Many lessons were learned in design and in quality control
- NOvA target is more robust in its ٠ design
 - Made possible by being outside of the horn.
 - LBNF Design returns to inside the horn
- Graphite degradation was observed ٠ on one target
 - May ultimately limit the performance of the target

Events Per POT v.s. Run (E, < 6 GeV)

202

Challenging Environments

- Replaced NuMI Horn summer 2015 due to failed stripline
 - First 700 kW capable horn, in service since Sept. 2013, accumulated ~ 27 million pulses
- Failure was due to fatigue, likely enhance by vibrations

202

Booster Neutrino Beam (BNB)

- Uses 8 GeV beam from the Fermilab Booster, operating since 2002
 Up to ~ 30 kW of beam (5e12 ppp)
- Beryllium target integrated with single focusing horn
- Services a suite of experiments at Fermilab: the Short Baseline Neutrino (SBN) program

High Power Targetry: Materials R&D

Multi-MW Neutrino Targets & Beam Windows Materials:

- Graphite (target core material) studies:
 - Swelling/fracture studies
 - Preparing for HE proton irradiation at BLIP (2020) to confirm elevated temperature annealing
- Beryllium (beam window material) studies:
 - Examination of BLIP irradiated Be specimens underway
 - Helium implantation studies show bubble formation at irradiation temperatures above 360 °C
- Titanium Alloys (beam window material) studies:
 - Examination of BLIP irradiated specimens underway
 - World first high cycle fatigue testing of irradiated titanium underway at FNAL

Benefits to multi-MW targets e.g. LBNF):

- alloy/grade choice
- cooling system design
- tolerable beam
 intensities
- expected lifetimes

Radiation Damage In Accelerator Target Environments

Broad aims are threefold:

www-radiate.fnal.gov

🗲 Fermilab

- to generate new and useful materials data for application within the accelerator and fission/fusion communities
- to recruit and develop new scientific and engineering experts who can cross the boundaries between these communities
- to initiate and coordinate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

• 1.2 MW Design is evolved from T2K target: longer, higher power, sits within horn, more protection, more precision

🚰 Fermilab

- 2.4 MW Design has not been seriously pursued yet, helium cooling may be at its limit
- Prototyping has begun

MINOS / NOVA / LBNF Targets

	NuMI / MINOS	NuMI / NOvA	NuMI / NOvA 1 MW	LBNF
Distance to far detector	735 km	810 km	810 km	1300 km
Desired v energy	1 to 15 GeV	2 GeV	2 GeV	0.8 & 2.7 GeV
Detector Off-beam-axis angle	0	14 mrad	14 mrad	0
Design beam power	400 kW	700 kW	1 MW	1.2 MW initial
Energy per proton	120 GeV	120 GeV	120 GeV	80-120 GeV
Number of horns	2	2	2	3
Target length	0.95 m	1.2 m	1.2 m	1.5-2.2 m
Distance between target downstream end and horn	1.6 m to -0.6 m (Variable)	0.2 m (Not in horn)	0.2 m (Not in horn)	-1.5 m (In horn)
Protons/spill	4.4 E13	4.9 E13	6.25 E13	7.6 E13
Repetition rate	2.2 sec	1.33 sec	1.2 sec	1.2 sec

Mu2eTarget Station

- 8 GeV Protons from Delivery Ring @ 8 kW
 - 8 Slow Spill bunches to Mu2e each 43 msec long for 380 ms.
 - Then, 1020 msec of no beam
 - Operate for 1 year (2 x 10^7 seconds ~ 5555 hrs ~ 33 weeks)
- Target operates within a superconducting solenoid (2-5 T) and a vacuum
 - Has similarities to Muon Collider Front End

Mu2e Target Evolution

- Simplicity: Radiatively-cooled, highdensity target - Tungsten
 - 8 kW is at the edge of possibility for this target
- Refractory metals can go to very high temperatures, but tend to crystallize in a form that is very brittle
 - Tungsten must be kept < 1200 C

• Helium- or water-cooled target as an alternative or upgrade

202

A few notes for Muon Collider Targets

- Most comparable configuration is Mu2e challenging at 8 kW @ 8 GeV.
 - Extrapolation to Mu2e-II (100 kW @ 1 GeV) has no present solution
 - Cannot Extrapolate to historical Muon Collider (4 MW @ few GeV)
- Higher proton beam energy is better for the target (less power deposited in target for the same beam power)
- Separating target from optics is very beneficial
 - Has the capacity to allow rotation and more robust support systems
 - Can more forward production from higher-energy protons be used?
- Muon collider requirements on precision may be less strict
- Machine Protection is vitally important at high power. Targets and facilities must have this built in from the beginning.
- Attempt to avoid liquid targets. Enormous investment and R&D, many risks. SNS, ESS, J-PARC have all decided against liquid targets for new target stations

Radiation Damage Disorders Microstructure

Microstructural response:

- creation of transmutation products;
- atomic displacements (cascades)
 - average number of stable interstitial/vacancy pairs created = DPA (Displacements Per Atom)
- Gas production (hydrogen / helium)

🛠 Fermilab

Nu HPT R&D Materials Exploratory Map

72

Fermilab Experiments' Run Schedule

Office of the CRO January 2022

		DRAFT LONG-RANGE PLAN										_			
		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	L
LBNF /	SANFORD				DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	D UNE	DUNE	
PIP II	FNAL				LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBN F	LBNF	
NuMI	мі	1INER _V	1INER ₁	DPEI	OPEN	2x2	2x 2	2x2	2x2	2x2			50	Note 4	1
		NOvA	NOvA	NOV/	NOvA	NOvA	NOvA	NOvA	NOvA	NOvA			36	e Note 4	1
BNB	в	ιBooN	ιBooN	Bool	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN			OPEN	OPEN	ľ
		CARU:	CARU:	:ARL	CARU:	CARU:	CARU	CARU	CARU	ICARUS			OPEN	OPEN	
		SBND	SBND	BNI	SBND	SBND	SBND	SBND	SBND	SBND			OPEN	OPEN	
Muon Complex		g-2	g-2	g-2	g-2	g-2	g-2							\sim	
		Mu2e	Mu2e	<mark>/lu2</mark>	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e			Mu2e	Mu2e	μ
SY 120	MT	FTBF	FTBF	FTBI	FTBF	FTBF	FTBF	FTBF	FTBF	FTBI			FTBF	FTBF	Γ
	MC	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBI			FTBF	FTBF	5
	NM4	OPEN	SpinQ	ipin(SpinQ	<mark>Spin</mark> Q	SpinQ	SpinQ	OPEN	DPEI			OPEN	OPEN	۴
LINAC	MTA				ITA	ITA	ITA	ITA	ITA	ITA					
		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	
	Construction / commissioning 📕 Run 📄 Subject to further review 📕 Shutdown														
			apability	ended	\square	Capak	oility una	vailable							

NOTES 1. This draft long-range plan is updated bi-annually, typically following PAC meetings.

2. The timing and length of the Long Shutdown associated with the major construction activities at the lab will become clearer as the projects are baselined. Optimized commissioning and physics startup plans will be developed. Summer shutdowns will typically last about 4 months during the construction of LBNF/DUNE and PIP-II.

3. There will be no SY120 running from 6/2026 through the end of the long shutdown.

4. NOvA will run at least until the beginning of the Long Shutdown. A decision on whether to run after the Long Shutdown using PIP-II will be made before the Long Shutdown begins. The NOvA experiment will continue to alternate between neutrino and anti-neutrino running.

5. SpinQuest is expected to finish commissioning and start running late in FY22. Running beyond FY23 is subject to further review.

6. The MTA beamline and the Irradiation Test Area (ITA) began operations in FY21. It will not return in FY29.

7. The optimal timing of the Muon Complex switch from Muon g-2 to Mu2e commisioning and data running will continue to be monitored as Mu2e construction and g-2 data collection progress.

High Power Target Materials R&D [1]

Examine targets and beam window materials behavior under prototypic multi-MW proton beam conditions

- Graphite (target core) studies:
 - Beam-induced swelling and fracture studies
 - High-dose ion irradiation of graphite
- Beryllium (beam window) studies:
 - NuMI beam window analysis & Helium ion implantation
 - Post-irradiation examination of BLIP-irradiated specimens
 - In-beam thermal shock testing at CERN's HiRadMat facility
- Titanium (beam window) studies:
 - Tensile testing of BLIP-irradiated specimens
 - Low-energy ion irradiation and nano-indentation
 - World first high-cycle fatigue testing of irradiated titanium at FNAL
- Novel materials studies:
 - Electro-spun nanofibers, high-entropy alloys, metal foams, MoGr, highly-ductile TFGR tungsten

High Power Target Materials R&D [2]

- Bulk material properties change as a result of radiation damage in highly irradiated materials.
- Very limited engineering data (physical properties) exists for high energy proton irradiated materials
 - Need to collect relevant data to support target design and material choice
 - High energy proton irradiation
 - Highly activated material ⇒ need hot cells and specific characterization equipment
 - High energy ⇒ Low dpa rate ⇒ long irradiation time (order of months) ⇒ Expensive
 - Future needs
 - Develop dedicated tools for irradiated material studies
 - Develop new capabilities on-site to better support R&D
 - HPT laboratory with cold area and hot lab
 - Develop alternatives to
 - Radiation damage methods
 - Thermal shock and thermal fatigue

FNAL Fatigue test machine for irradiated samples

```
Hot lab of the future High Power
Targetry (HPT) Lab
```

Alternative to High Energy Proton Beam

- Alternative radiation damage method
 - Low-energy ion irradiation
 - Lower cost, high dose rate without activating the specimen
 - Narrow penetration depth
 - Micro-mechanics and meso-scale testing
 - Doesn't reproduce the gas (H and He) production
 - He implantation in Graphite at Michigan Ion Beam Lab
 - Very few heavy ion irradiation facilities around the world ⇒
 Need more development of such facilities
- Alternative thermal shock method
 - Use of electron beams, lasers, or other techniques could reduce the cost and length of R&D cycles compared to proton beam-line tests
- Ab initio and MD modeling could help to guide the development of alternative techniques

Making Predictions is Hard, Especially about the Future: We will need targets

• We know:

- LBNF is to run at 1.2, then 2.4 MW
- PIP-II will be capable of 1.6 MW @ 800MeV
- A Mu2e follow-on experiment will be desired

• We don't know:

- Which experiments want 800 MeV beam (or 2 GeV or 8 GeV)
- If future upgrades, will be linacs, synchrotrons, or accumulators
- Whether the linac portion will be full CW capable
- Whether the exiting target stations will continue to run

What else do we not know we don't know?

The Bottom Line is that we need to develop our expertise in targets and target stations to execute the HEP program.

Czero Long Term Storage and Remote Handling Facility

- Long-term storage for spent beam devices
- Handling facilities for investigations

- Three Medium-term storage bays
- Large, long-term storage hall
- One hot-cell with telemanipulators

Storage Hall Layout

Storage Hall

🗖 🛟 Fermilab

81

Moving In First Hot Component

PH1-02 in place in storage hall

- Will be ready for permanent disposal in 3-6 years
- Have a lot of space
- Remote Handling is for moving casks only

Mu2e Target

- Radiatively-cooled Tungsten target, suspended in solenoid vacuum
 - Finned shape for expansion and thermal radiation
 - Unmeasured behavior of tungsten with this intense beam exposure
- Design power is only 8 kW beam, ~ 4 kW deposited in target
 - Still, the target design is very challenging within the experimental constraints expect continuous development
- Mu2e team has recently been augmented with the hiring of a lead engineer and a lead physicist
- Expecting beam operations in ~ 2025

Mu2e-II Target !!

- Proposed upgrade of Mu2e to use PIP-II
 800 MeV beam at 100 kW
- Target considerations are more directly related to the number of protons
 - 120x More Challenging!
 - 12x from power
 - 10x from energy
- Mu2e-II target will be completely distinct from Mu2e, and possibly major portions of the experiment need to be rebuilt
 - Developing a concept for a target would enable the start of materials R&D

Kinetic Enegy [MeV]	800
Instantanous Current [mA]	10
Instantaneous Power [kW]	8000
Average available Power [kW]	100
f {MHz]	162.5
Bunch spacing [ns]	6.2
Bulse length [ps]	4.0
protons/bunch	3.8E+08

Mu2e Remote Handling

- Procedurally controlled robotic replacement system
 - Has some minimal feedback loops
 - A new approach for Fermilab in remote handling
 - Likely to be used yearly
 - Prototype system has been built and is being tested and developed as part of the project
- Expect to develop this system as operations begins
 - Build Body of knowledge for Mu2e-II