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Towards High QE GaAs Photocathode

Motivation:

O Understanding surface roughness variations due to
heat treatment

0 Understanding surface cleaning and its effect on QE

O Evaluating chemical states of CsO/GaAs
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Towards High QE GaAs Photocathode

Substrate Preparation and Characterization

Multiprobe system located in Center for Functional
Nanomaterial (CFN) at Brookhaven National Laboratory
(BNL).
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Towards High QE GaAs Photocathode

Substrate Preparation and Characterization - Surface Roughness
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Towards High QE GaAs Photocathode

Conclusion from Substrate Preparation and Characterization

U Contrary to common assumption, we found that
right amount of heat treatment at UHV
decreases the surface RMS roughness.

U This preparation is optimal for the subsequent
growth of thin activation material on it.

U Reduced field emission and emittance growth.
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Pre-growth contamination analysis using XPS
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Towards High QE GaAs Photocathode

Pre-growth contamination analysis using XPS
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Pre-growth contamination analysis using XPS
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Towards High QE GaAs Photocathode

Pre-growth contamination analysis using XPS
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Pre-growth contamination analysis using XPS
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Pre-growth contamination analysis using XPS
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Conclusion from pre-growth contamination analysis
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Towards High QE GaAs Photocathode

Conclusion from pre-growth contamination analysis

Although others have confirmed that presence of H,0
leads to lower QE, we have shown presence of H,0
causes other types of contamination to appear on the
surface.
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Towards High QE GaAs Photocathode

Chemical analysis of CsO/GaAs cathode using AR-XPS/UPS

(a) 90° take-off angle

a = electron take of f angle
ID = Information depth
ID = d sina
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Towards High QE GaAs Photocathode

Chemical analysis of CsO/GaAs cathode using AR-XPS/UPS

(a) 90° take-off angle (b) 30° take-off angle
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Chemical anaIyS|s of CsO/GaAs cathode usmg AR XPS/UPS
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Chemical anaIyS|s of CsO/GaAs cathode usmg AR XPS/UPS
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Towards High QE GaAs Photocathode
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Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs
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Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

L This is a first detailed chemical analysis of Cs-O activation
on GaAs.
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Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

L This is a first detailed chemical analysis of Cs-O activation
on GaAs.

0 We find the ratio of Cs & O on the activation layer, Cs:0 = 2:1

» No formation of previously proposed Cs,0, or Cs110;
compound in activation layer.
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Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

L This is a first detailed chemical analysis of Cs-O activation
on GaAs.

0 We find the ratio of Cs & O on the activation layer, Cs:0 = 2:1

> No formation of previously proposed Cs,0, or Cs1103
compound in activation layer.

L XPS confirms that, surface start to lose Cs significantly at
~100°C, whereas oxygen loss is significant even at 60°C.

» Laser illumination induced heating could destroy the
cathode if temperature of the sample exceeds 60°C.

(\ Brookhaven
hationgltahoratory J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969 13




Towards Long Charge lifetime GaAs Photocathode

New Activation Technique using Te, Cs, and O

We developed a new technique of activation
employing a combination of cesium, tellurium,
and oxygen that shows longer charge lifetime.
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New Cs-Te and Cs-Te-O based Activation on GaAs
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New Cs-Te and Cs-Te-O based Activation on GaAs
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New Cs-Te and Cs-Te-O based Activation on GaAs
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Towards Long Charge lifetime GaAs Photocathode

New Cs-Te and Cs-Te-O based Activation on GaAs

Oxide desorption — LEED

L'“ Brookhaven
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New Cs-Te and Cs-Te-O based Activation on GaAs

(1x1), & defused (4x6)
reconstruction

Oxide desorption — LEED
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New Cs-Te and Cs-Te-O based Activation on GaAs
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Towards Long Charge lifetime GaAs Photocathode

New Cs-Te and Cs-Te-O based Activation on GaAs
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Towards Long Charge lifetime GaAs Photocathode

New Cs-Te and Cs-Te-O based Activation on GaAs
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New Cs-Te and Cs-Te-O based Activation on GaAs
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Towards Long Charge lifetime GaAs Photocathode
New Cs-Te and Cs-Te-O based Activation on GaAs
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Towards Long Charge lifetime GaAs Photocathode

Conclusion from the Cs-Te and Cs-Te-O based Activation

QIn Cs-Te activation QE at 532 nm: 6.6%

QIn Cs-Te-O activation QE at 532 nm: 8.8%; at
780 nm: 4.5%

I k? Brookhaven J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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Towards Long Charge lifetime GaAs Photocathode

Comparing Charge lifetime of Cs-Te-O based Activation
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We demonstrated 5-6 times longer charge lifetime in
a test chamber as compared to Cs-O/GaAs

k" Brookhaven
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Towards Long Charge lifetime GaAs Photocathode

Evaluating Surface Chemical States Cs-Te/GaAs
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Evaluating Surface Chemical States Cs-Te/GaAs
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Towards Long Charge lifetime GaAs Photocathode

Conclusion from Surface Chemical States Cs-Te/GaAs

U Successful formation of Cs,Te, which is robust against
poor vacuum

0 Chemical shift of Ga 3d, & As 3d suggest formation of
surface dipole, similar to Cs-O activation.

U Estimated Cs-Te layer thickness 2 + 0.2 nm

<" Brookhaven
I k' National Laboratary J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839 20




Towards Long Charge lifetime GaAs Photocathode

Evaluating Surface Chemical States Cs-Te-O/GaAs

¢ Brookhaven
National Laboratary 21



Towards Long Charge lifetime GaAs Photocathode

Evaluating Surface Chemical States Cs-Te-O/GaAs
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Towards Long Charge lifetime GaAs Photocathode

Conclusion from the Chemical Analysis of Cs-Te-O/GaAs

0 Successful formation of Cs,Te, which is robust against
poor vacuum

U Large chemical shift of Ga 3d, & As 3d suggest
formation of surface dipole similar to CsO/GaAs.

U Estimated Cs-Te layer thickness 1.6 + 0.2 nm

<" Brookhaven
I k' National Laboratary J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839 22
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Evaluating the Negative Electron Affinity (NEA)
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Towards Long Charge lifetime GaAs Photocathode

Evaluatlng the Negative Electron Afflnlty (NEA)
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Towards Long Charge lifetime GaAs Photocathode

Evaluatlng the Negative Electron Afflnlty (NEA)
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Evaluatlng the Negative Electron Afflnlty (NEA)
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Towards Long Charge lifetime GaAs Photocathode

Evaluatlng the Negative Electron Afflnlty (NEA)
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Towards Long Charge lifetime GaAs Photocathode
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Conclusion from the NEA Measurement

O On Cs-Te activation the achieves NEA;  y.rr= —0.02 eV

O On Cs-Te-O activation the achieved NEA;  x.rr= —0.42 eV
This is comparable to CsO/GaAs NEA.

NEA is important because the thermalized electrons at the
bottom of the conduction band can escape into the vacuum.
Thus, QE increases the when larger NEA is achieved.

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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Towards High Electron Spin Polarization (ESP)

Superlattice (SL) GaAs

GaAs/
GaAsP

I k? Brookhaven Jin et el. Appl. Phys. Lett. 105, 203509 (2014)
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Towards High Electron Spin Polarization (ESP)

Superlattice (SL) GaAs
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Towards High Electron Spin Polarization (ESP)

Superlattice (SL) GaAs SL — GaAs with Bragg Reflector
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Towards High Electron Spin Polarization (ESP)

Superlattice (SL) GaAs SL — GaAs with Bragg Reflector
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Towards High Electron Spin Polarization (ESP)

Superlattice (SL) GaAs
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Towards High Electron Spin Polarization (ESP)

Motivation:

O Achieving both high QE and ESP at near
bandgap energy is challenging.

U We need stable vendors.
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Towards High QE and ESP using SL-DBR

We have been growing SL-DBR and characterizing them
» Details will follow in the Poster session: WEPA68
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Towards High QE and ESP using SL-DBR

We have been growing SL-DBR and characterizing them
» Details will follow in the Poster session: WEPA68
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Towards High QE and ESP using SL-DBR

We have been growing SL-DBR and characterizing them
» Details will follow in the Poster session: WEPA68
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Towards High QE and ESP using SL-DBR

We have been growing SL-DBR and characterizing them
» Details will follow in the Poster session: WEPA68

*

_ B Photocathode reflectance Good agreement
1

GaAsg Py 35 4nm p = 5x10'7 cm3 09 = —Measured reflectance between the
GaAs 4nm p = 5x1077 cm? 30 pairs 08 | —Simulated reflectance reﬂectance and the
measured one.
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Gas buffer 200 nm p = 5x10% cm3 polarization are currently
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Achieved over 15% QE and ESP around 75% at near
band gap photon energies.

2% Brookhaven
k' National.Laboretory, J. Biswas et el. NAPAC 2022, Paper WEPA68 27
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the states before, and after activation
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In the XPS measurement of the chemical states of CsO/GaAs we demonstrate
the states before, and after activation

The XPS-TPD measurement established that loss of Cs and O may take place at
temperatures as low as 60°C.

We discovered that heat cleaning (~580°C) of GaAs will not cause roughness
increase- suitable for growth of thin robust activation material.

Our newly developed Cs-Te-O based activation on GaAs showed high QE, and
5-6 times longer charge lifetime compared to CsO activation in a test chamber.

Cs-Te-O based GaAs shows NEA, and chemical states are identified for the first
time.

Brookhaven

National Laboratary

> Let’s evaluate the robustness & charge lifetime of Cs-Te-O/GaAs
inagun

> SL/ SL-DBR with Cs-Te-O based activation
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» We have been growing SL/SL-DBR GaAs and measuring the QE & ESP, crystal
quality at BNL.
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quality at BNL.

» On SL-DBR we obtained QE exceeding 15% and ESP around 75% at near
bandgap photon energy (i.e., ~780 nm)
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» We have been growing SL/SL-DBR GaAs and measuring the QE & ESP, crystal
quality at BNL.

» On SL-DBR we obtained QE exceeding 15% and ESP around 75% at near
bandgap photon energy (i.e., ~780 nm)

» Further tuning of SL layer, and growth method are ongoing, and
activation with Cs-Te-O could lead to even higher QE.
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