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Polarized Electron Sources 
GaAs-based photocathodes: Essential Attributes

High Electron Spin Polarization (ESP)

High Quantum Efficiency (QE)

 Long charge lifetime 

I will present our advances on each of these issues!

Engineering the cathode, SL-DBR

Activation material that is robust 
against poor vacuum 

Robust activation layer material 

SL-GaAs, or SL-DBR

Reducing Surface Contamination
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Towards High QE GaAs Photocathode

Motivation: 

Understanding surface roughness variations due to 
heat treatment

Understanding surface cleaning and its effect on QE 

Evaluating chemical states of CsO/GaAs 
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Towards High QE GaAs Photocathode
Substrate Preparation and Characterization 

Schematic drawing of the multiprobe system at CFN, 
BNL

Multiprobe system located in Center for Functional 
Nanomaterial (CFN) at  Brookhaven National Laboratory 
(BNL). 

Manipulator

Electron Analyzer

STM Chamber
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J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969
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After 580° C After CsO activation

Room Temperature After 300° C

STM - GaAs at different temperature, & after 
activation

RT

After 300° C
After 580° C
After Activation

RMS roughness at different stage of the activation

Towards High QE GaAs Photocathode
Substrate Preparation and Characterization  - Surface Roughness 

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969
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Towards High QE GaAs Photocathode

Contrary to common assumption, we found that 
right amount of heat treatment at UHV 
decreases the surface RMS roughness. 

Conclusion from Substrate Preparation and Characterization 

This preparation is optimal for the subsequent 
growth of thin activation material on it. 

Reduced field emission and emittance growth. 

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969
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AsAs

Pre-growth contamination analysis using XPS

𝐻ଶ𝑂 𝑂𝐻 𝑂𝑥𝑖𝑑𝑒

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969
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Towards High QE GaAs Photocathode

Although others have confirmed that presence of 𝐻ଶ𝑂
leads to lower QE, we have shown presence of 𝐻ଶ𝑂
causes other types of contamination to appear on the 
surface. 

Conclusion from pre-growth contamination analysis

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969
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Towards High QE GaAs Photocathode

UPS after Cs-O 
Activation XPS - Temperature Programmed Reduction

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969

Chemical analysis of CsO/GaAs cathode using AR-XPS/UPS
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Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969



13

Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969

This is a first detailed chemical analysis of Cs-O activation 
on GaAs. 



13

Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969

This is a first detailed chemical analysis of Cs-O activation 
on GaAs. 

We find the ratio of Cs & O on the activation layer,  Cs:O ൎ 2:1
 No formation of previously proposed 𝐂𝐬𝟐𝐎, or 𝑪𝒔𝟏𝟏𝐎𝟑

compound in activation layer.



13

Towards High QE GaAs Photocathode

Conclusion from the chemical analysis of CsO/GaAs

J. Biswas et al. J. Appl. Phys. 128, 045308 (2020); https://doi.org/10.1063/5.0008969

This is a first detailed chemical analysis of Cs-O activation 
on GaAs. 

We find the ratio of Cs & O on the activation layer,  Cs:O ൎ 2:1
 No formation of previously proposed 𝐂𝐬𝟐𝐎, or 𝑪𝒔𝟏𝟏𝐎𝟑

compound in activation layer.

 Laser illumination induced heating could destroy the 
cathode if temperature of the sample exceeds 60°C. 

XPS confirms that, surface start to lose Cs significantly at ~100°C, whereas oxygen loss is significant even at 60°C.  
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Towards Long Charge lifetime GaAs Photocathode 

New Activation Technique using Te, Cs, and O   

We developed a new technique of activation 
employing a combination of cesium, tellurium, 
and oxygen that shows longer charge lifetime. 
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LEEM/XPEEM  beamline located at NSLS II, BNL
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Cathode chamber at CAD, BNL

Manipulator

Cathode Prep 
chamber
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New Cs-Te and Cs-Te-O based Activation on GaAs
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 In Cs-Te activation QE at 532 nm: 6.6%

Towards Long Charge lifetime GaAs Photocathode 

 In Cs-Te-O activation QE at 532 nm: 8.8%; at 
780 nm: 4.5%

Conclusion from the Cs-Te and Cs-Te-O based Activation

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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We demonstrated 5-6 times longer charge lifetime in 
a test chamber as compared to Cs-O/GaAs

Towards Long Charge lifetime GaAs Photocathode 

Comparing Charge lifetime  of Cs-Te-O based Activation

O. Rahman et al. , Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia
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Evaluating Surface Chemical States Cs-Te/GaAs

SR-XPS spectra after GaAs photocathode activation with Cs-Te

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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Towards Long Charge lifetime GaAs Photocathode 

Successful formation of 𝐶𝑠ଶ𝑇𝑒, which is robust against 
poor vacuum 

Chemical shift of Ga 3d, & As 3d suggest formation of 
surface dipole, similar to Cs-O activation. 

Conclusion from Surface Chemical States Cs-Te/GaAs

Estimated Cs-Te layer thickness  2 േ 0.2 𝑛𝑚
J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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Towards Long Charge lifetime GaAs Photocathode 

Evaluating Surface Chemical States Cs-Te-O/GaAs

SR-XPS spectra after GaAs photocathode activation with Cs-Te-O

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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Towards Long Charge lifetime GaAs Photocathode 

Successful formation of 𝐶𝑠ଶ𝑇𝑒, which is robust against 
poor vacuum 

Large chemical shift of Ga 3d, & As 3d suggest 
formation of surface dipole similar to CsO/GaAs.  

Conclusion from the Chemical Analysis of Cs-Te-O/GaAs

Estimated Cs-Te layer thickness  1.6 േ 0.2 𝑛𝑚
J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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LEEM I/V of Cs-Te activated GaAs LEEM I/V of Cs-Te-O activated GaAs
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LEEM I/V of Cs-Te activated GaAs LEEM I/V of Cs-Te-O activated GaAs

Cs-Te/GaAs

Final work function, Φ௙ ൌ 1.4 eV
Effective NEA, 𝜒௘௙௙ ൌ െ0.02 eV

Cs-Te-O/GaAs

Final work function, Φ௙ ൌ 1.0 eV
Effective NEA, 𝜒௘௙௙ ൌ െ0.42 eV Schematic drawing of 

energy band diagram
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Towards Long Charge lifetime GaAs Photocathode 

Evaluating the Negative Electron Affinity (NEA)

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839
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 On Cs-Te activation the achieves NEA;    𝝌𝒆𝒇𝒇ൌ െ𝟎. 𝟎𝟐 𝐞𝐕
 On Cs-Te-O activation the achieved NEA;    𝝌𝒆𝒇𝒇ൌ െ𝟎. 𝟒𝟐 𝐞𝐕

This is comparable to CsO/GaAs NEA. 

NEA is important because the thermalized electrons at the 
bottom of the conduction band can escape into the vacuum.
Thus, QE increases the when larger NEA is achieved.  

J. Biswas et al. AIP Advances 11, 025321 (2021); https://doi.org/10.1063/5.0026839



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs

Jin et el. Appl. Phys. Lett. 105, 203509 (2014) 



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs

Jin et el. Appl. Phys. Lett. 105, 203509 (2014) 



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs SL – GaAs with Bragg Reflector

Jin et el. Appl. Phys. Lett. 105, 203509 (2014) 



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs SL – GaAs with Bragg Reflector

Jin et el. Appl. Phys. Lett. 105, 203509 (2014) 

Standard photocathode DBR photocathode



25

Towards High Electron Spin Polarization (ESP) 
Superlattice (SL) GaAs SL – GaAs with Bragg Reflector

Jin et el. Appl. Phys. Lett. 105, 203509 (2014) 

Standard photocathode DBR photocathode

Liu et el. Appl. Phys. Lett. 109, 252104 (2016) 
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Towards High Electron Spin Polarization (ESP) 

 Achieving both high QE and ESP at near 
bandgap energy is challenging. 

Motivation: 

 We need stable vendors.
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Towards High QE and ESP using SL-DBR 

We have been growing SL-DBR and characterizing them 
 Details will follow in the Poster session: WEPA68

GaAs 5 nm p = 5x1019 cm-3

GaAs0.62P0.38 4 nm p = 5x1017 cm-3

GaAs 4 nm p = 5x1017 cm-3

GaAs0.81P0.19 300 nm p = 5x1018 cm-3

AlAs0.78P0.22 65 nm p = 5x1018 cm-3

GaAs0.81P0.19 55 nm p = 5x1018 cm-3

GaAs0.81P0.19 2000 nm p = 5x1018 cm-3

GaAs->GaAs0.81P0.19 2750 nm p = 5x1018 cm-3

GaAs buffer 200 nm p = 5x1018 cm-3

GaAs substrate p > 1x1018 cm-3

30 pairs

10 pairs
85 layers!!!
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GaAs0.81P0.19 55 nm p = 5x1018 cm-3

GaAs0.81P0.19 2000 nm p = 5x1018 cm-3

GaAs->GaAs0.81P0.19 2750 nm p = 5x1018 cm-3

GaAs buffer 200 nm p = 5x1018 cm-3

GaAs substrate p > 1x1018 cm-3

30 pairs

10 pairs
85 layers!!!

Good agreement 
between the design 
reflectance and the 
measured one.

The sample 
photoemission 
efficiecny and the 
photoelectron spin 
polarization are currently 
being evaluated at BNL

Achieved over 15% QE and ESP around 75% at near 
band gap photon energies. 

J. Biswas et el. NAPAC 2022, Paper WEPA68
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 Our newly developed Cs-Te-O based activation on GaAs showed high QE, and 
5-6 times longer charge lifetime compared to CsO activation in a test chamber.

 Cs-Te-O based GaAs shows NEA, and chemical states are identified for the first 
time. 

 The XPS-TPD measurement established that loss of Cs and O may take place at 
temperatures as low as 60°C. 

 In the XPS measurement of the chemical states of CsO/GaAs we demonstrate 
the states before, and after activation

 We discovered that heat cleaning (~580°𝐶) of GaAs will not cause roughness 
increase- suitable for growth of thin robust activation material.

 Let’s evaluate the robustness & charge lifetime  of Cs-Te-O/GaAs 
in a gun 

 SL / SL-DBR with Cs-Te-O based activation 
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 We have been growing SL/SL-DBR  GaAs and measuring the QE & ESP, crystal 
quality at BNL. 

 On SL-DBR we obtained QE exceeding 15% and ESP around 75% at  near 
bandgap photon energy (i.e., ~780 𝑛𝑚)  

 Further tuning of SL layer, and growth method are ongoing, and 
activation with Cs-Te-O could lead to even higher QE. 
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