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Abstract

Introduction and Motivation
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The Continuous Electron Beam Accelerator Facility (CEBAF) at 
Jefferson Lab operates hundreds of superconducting radio frequency 
(SRF) cavities in its two main linear accelerators. Field emission can 
occur when the cavities are set to high operating RF gradients and is an 
ongoing operational challenge. This is especially true in higher gradient 
SRF cavities. Field emission results in damage to accelerator hardware, 
generates high levels of neutron and gamma radiation, and has 
deleterious effects on CEBAF operations. Therefore, field emission 
reduction is imperative for the reliable, high gradient operation of 
CEBAF that is required by experimenters. In this poster, we explore the 
use of deep learning architectures via multilayer perceptron and the use 
of tree based models to simultaneously model radiation measurements at 
multiple detectors in response to arbitrary gradient distributions. These 
models are trained on collected data and could be used to minimize the 
radiation production through gradient redistribution. This work builds on 
previous efforts in developing machine learning (ML) models, and is 
able to produce similar model performance as our previous ML model 
without requiring knowledge of the field emission onset for each cavity. 

Fig. 1 Schematic of CEBAF 
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Fig. 5 Data preprocessing and model development

Fig. 6 : A baseline multilayer perceptron architecture with 
two hidden layers. Note: both inputs and outputs are 
individually normalized

Fig. 8 Training and Validation loss for MLP model

Model Metrics Training Validation Test 

MLP
R2 0.989 0.986 0.985

MSE 2.806 4.005 4.148
MAE 0.853 1.015 0.985

XGBoost
R2 0.998 0.986 0.986

MSE 0.383 2.911 2.622
MAE 0.345 0.853 0.794

 

Table 1: Training, validation and test results of MLP and XGBoost model

� Demonstrated ability to accurately predict radiation measurements 
based solely on cavity gradients through both MLP and XGBoost 
models

� Further work is required in order to keep these models performing 
well during the length of a run spanning few months in the face of 
changing CEBAF operational conditions

Fig. 7 Observed vs predicted plots for gamma radiation (rem/h) by the 
MLP (top) and XGBoost (bottom) models for test dataset at different 
detector regions (1L22-1L27)

Materials and Method

Fig. 4 Gradient, gamma and neutron measurement

Fig. 3 Data collection and experimental set up

� MLP (Fig. 6) , XGBoost 
(open source software 
library) models are 
employed for modeling 
radiation

� Hyperparameters 
(optimizer=Stochastic 
Gradient Descent, 
learning rate=0.01, 
momentum=0.9) of 
MLP 

� Hyperparameters  
(n_estimators=100, 
max_depth=6, 
max_leaves=0, 
min_child_weight=1,

    learning rate=0.2) of 
    XGBoost

� Collected time series data 
for gradient, gamma and 
neutron measurements 
(Fig. 4)

� Data preprocessing and 
model learning (Fig. 5)

� CEBAF is a high energy, 
recirculating continuous wave 
linear accelerator utilizing 418 
SRF cavities to accelerate 
electrons up to 12 GeV through 
5-passes [1] 

� Each SRF cavity has a unique 
gradient (MV/m) threshold over 
which field electrons are emitted

� When field emitted 
electrons are accelerated 
and collide with another 
material, radiation (gamma 
and neutron) production 
occurs. 

� This radiation damages the 
CEBAF’s equipment 

� The motivation is to 
explore an effective 
machine learning model 
for modeling radiation 
measurements so that the 
radiation can be minimized  

Fig. 2 Example of damage and 
radiation hazards due to field emission
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